首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在[0,1]上有连续导数,且f(0)=0,证明:存在ξ∈[0,1],使得 f’(ξ)=2∫01f(x)dx.
f(x)在[0,1]上有连续导数,且f(0)=0,证明:存在ξ∈[0,1],使得 f’(ξ)=2∫01f(x)dx.
admin
2020-03-16
89
问题
f(x)在[0,1]上有连续导数,且f(0)=0,证明:存在ξ∈[0,1],使得
f’(ξ)=2∫
0
1
f(x)dx.
选项
答案
因为f’(x)在[0,1]上连续,所以,f’(x)在[0,1]上有最小值和最大值,设为m,M,即有x
1
,x
2
∈[0,1],使f’(x
1
)=m,f’(x
2
)=M 由中值定理,对任意x∈[0,1],存在η∈(0,x),使f(x)=f(x)一f(0)=f’(η)x,于是有 f’(x)x=mx≤f(x)=f(x)一f(0)=f’(η)x≤Mx=f’(x
2
)x, 积分得 f’(x
1
)∫
0
1
xdx≤∫
0
1
f(x)dx≤f’(x
2
)∫
0
1
xdx, 即[*]f’(x
2
),即f’(x
1
)≤2∫
0
1
f(x)dx≤f(x
2
)。 因为f’(x)在[0,1]上连续,由介值定理,必有ξ∈[x
1
,x
2
][*][0,1], 使f’(ξ)=2∫
0
1
f(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/Cb84777K
0
考研数学二
相关试题推荐
把y看作自变量,χ为因变量,变换方程=χ.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=0的通解.
设对上题中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关。
已知曲线y=f(x)在任一点x处的切线斜率为k(k为常数),求曲线方程.
已知齐次线性方程组其中。试讨论a1,a2,…,an和b满足何种关系时:[img][/img]方程组有非零解,在有非零解时,求此方程组的一个基础解系。
计算定积分I=(a>0,b>0).
设f(x),g(x)在[a,b]上连续,且g(x)>0.利用闭区间上连续函数的性质,证明:存在一点ξ∈[a,b],使∫abf(x)g(x)=f(ξ)∫abg(x)dx.
[2001年]设α1,α2,…,αs为线性方程组AX=0的一个基础解系:β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βs也
已知y1=3,y2=3+x2,y3=3+ex.是二阶线性非齐次方程的解,求方程通解及方程.
设f(χ)在区间[a,b]上二阶可导且f〞(χ)≥0.证明:(b-a)f()≤∫abf(χ)dχ≤[f(a)+f(b)].
随机试题
在中医诊断学望舌中,可导致裂纹舌的有()。
A.复方铝酸铋片B.二甲双胍片C.甲氧氯普胺片D.瑞舒伐他汀片E.维生素C睡前服用,可使抑制肝脏合成胆固醇效果更好的药品是()。
在货物运输保险承包的风险中,一般外来风险包括()
玻璃板隔墙应()。
设定工程项目绩效目标指标的要求是()。
()是指由债务人或交易对手未能履行合同所规定的义务从而给银行带来损失的可能性。(2011年)
政府间事权及支出的划分一般应遵循的原则有()。
HeoftenattendspubliclecturesattheuniversityofCaliforniachiefly______hisEnglish.
民用航空器致人损害的免责事由为()
AGoalsBHistoryofWomen’sRightsMovementCStartofWomen’sRightsMovementDTraditionalStatusofWomenERights
最新回复
(
0
)