首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为 (Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T. a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为 (Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T. a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
admin
2017-10-21
87
问题
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为
(Ⅱ)的一个基础解系为η
1
=(2,一1,a+2,1)
T
,η
2
=(一1,2,4,a+8)
T
.
a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
选项
答案
(Ⅱ)的通解为c
1
η
1
+c
2
η
2
=(2c
1
—c
2
,一c
1
+2c
2
,(a+2)c
1
+4c
2
,c
1
+(a+8)c
2
)
T
. 将它代入(I),求出为使c
1
η
1
+c
2
η
2
也是(I)的解(从而是(I)和(Ⅱ)的公共解),c
1
,c
2
应满足的条件为: [*] 于是当a+1≠0时,必须c
1
=c
2
=0,即此时公共解只有零解. 当a+1=0时,对任何c
1
,c
2
,c
1
η
1
+c
2
η
2
都是公共解.从而(I),(Ⅱ)有公共非零解.此时它们的公共非零解也就是(Ⅱ)的非零解:c
1
η
1
+c
2
η
2
,c
1
,c
2
不全为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/CdH4777K
0
考研数学三
相关试题推荐
求y=(1一t)arctantdt的极值.
设一抛物线y=ax2+bx+c过点(0,0)与(1,2),且a<0,确定a,b,c,使得抛物线与x轴所围图形的面积最小.
设A~B,(1)求a,b;(2)求可逆矩阵P,使得P—1AP=B
设n阶矩阵A与对角矩阵相似,则().
设为发散的正项级数,令Sn=a1+a2+…+an(a=1,2,…).证明:收敛.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn—1=0,b=α1+α1+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设A=(α1,α2,α3,α4,α4),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
随机试题
A、K+外流B、Ca2+内流和K+外流C、Na+内流D、Ca2+缓慢内流E、Na+和Ca2+内流心室肌细胞2期平台期主要是由于
查科(Charcot)三联征对哪种疾病有诊断意义
对某地25~55岁妇女进行的一项调查发现:服用口服避孕药者中,心肌梗死的年发病率为5/10万,而不服用者为2/10万。据此,研究者认为:服用口服避孕药是引起心肌梗死的危险因子。这个结论是
A.食物中缺少碘B.甲状腺激素合成减少C.食物中缺少酪氨酸D.血中甲状腺激素浓度过高E.促甲状腺激素合成减少甲状腺危象的发病原因是
为保证施工现场用电安全,有效防止触电和电器火灾事故,施工现场临时用电工程专用的电源中性点直接接地的220V/380V三相四线制低压电力系统。下列不属于三项基本用电原则的是()。
姜晶今年17岁,在两年前被学校劝退,现在独自在家自学。她为自己制订了很详细的学习计划,每天很有规律地阅读自己喜欢的书籍,写一些文章在网络上发表,或是学一些感兴趣的知识。这样好学的孩子为什么会被学校劝退呢?经过社会工作者去学校所作的了解,姜晶是因为违反学校的
以下属于我国法律对象效力确定原则的是()。
Whyiscornfeedingmillionsofpeopletoday?
HowmanyrefugeescamefromVietnamsincetheearly1970s?
TheMagicofMemory—ByLaurenceCherryOurmemoriesare
最新回复
(
0
)