首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为 (Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T. a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为 (Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T. a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
admin
2017-10-21
73
问题
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为
(Ⅱ)的一个基础解系为η
1
=(2,一1,a+2,1)
T
,η
2
=(一1,2,4,a+8)
T
.
a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
选项
答案
(Ⅱ)的通解为c
1
η
1
+c
2
η
2
=(2c
1
—c
2
,一c
1
+2c
2
,(a+2)c
1
+4c
2
,c
1
+(a+8)c
2
)
T
. 将它代入(I),求出为使c
1
η
1
+c
2
η
2
也是(I)的解(从而是(I)和(Ⅱ)的公共解),c
1
,c
2
应满足的条件为: [*] 于是当a+1≠0时,必须c
1
=c
2
=0,即此时公共解只有零解. 当a+1=0时,对任何c
1
,c
2
,c
1
η
1
+c
2
η
2
都是公共解.从而(I),(Ⅱ)有公共非零解.此时它们的公共非零解也就是(Ⅱ)的非零解:c
1
η
1
+c
2
η
2
,c
1
,c
2
不全为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/CdH4777K
0
考研数学三
相关试题推荐
设α1,…,αn为n个m维向量,且m<n.证明:α1…,αn线性相关.
设向量组α1,α2,α3,α4线性无关,则向量组().
设A,B为三阶矩阵,且特征值均为一2,1,1,以下命题:(1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().
设,求f(x)的间断点并判断其类型.
A2一B2=(A+B)(A—B)的充分必要条件是__________.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设A是m×n矩阵,则下列命题正确的是().
对二元函数z=f(x,y),下列结论正确的是().
设α1,α2,α3,β1,β2都是4维列向量,且4阶行列式|α1,α2,α3,β1|=m,|α1,α2,β2,α3|=n,则4阶行列式|α3,α2,α1,β1+β2|等于()
证明:方阵A是正交矩阵,即AAT=E的充分必要条件是:(1)A的列向量组组成标准正交向量组,即或(2)A的行向量组组成标准正交向量组,即
随机试题
PresidentCoolidge’sstatement,"ThebusinessofAmericaisbusiness,"stillpointstoanimportanttruthtoday—thatbusinessin
关于原发性高血压脑出血的描述,正确的是
关于高血压病脑出血的描述,错误的是
一位慢性阻塞性肺气肿的患者,突感呼吸困难伴胸痛,下列最佳的检查方法是
影响药效学的相互作用包括
下列各项中,应计入产品生产成本的是()。
为预防幼儿发生“星期一综合症”,在执行幼儿园生活制度时应该做到()
下面对例句意思理解恰当的一项是()。例句:以我国小麦、棉花的集中产区华北平原为例,这里耕地面积约占全国的40%,但水资源仅占全国的6%左右。
Justfourbitsofinformationcollectedfromashopper’screditcardcanbeusedtoidentifyalmostanyone,researchershavefou
【B1】【B5】
最新回复
(
0
)