首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有 |f(x)—f(y)|≤M|x—y|k. (1)证明:当k>0时,f(x)在[a,b]上连续; (2)证明:当|k|>1时,f(x)=常数.
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有 |f(x)—f(y)|≤M|x—y|k. (1)证明:当k>0时,f(x)在[a,b]上连续; (2)证明:当|k|>1时,f(x)=常数.
admin
2018-11-22
50
问题
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有
|f(x)—f(y)|≤M|x—y|
k
.
(1)证明:当k>0时,f(x)在[a,b]上连续;
(2)证明:当|k|>1时,f(x)=常数.
选项
答案
(1)对任意的x
0
∈[a,b],由已知条件得 0≤|f(x)一f(x
0
)|≤M|x—x
0
|
k
,[*]=f(x
0
), 再由x
0
的任意性得f(x)在[a,b]上连续. (2)对任意的x
0
∈[a,b],因为k>1, 所以0≤[*]≤M|x—x
0
|
k—1
,由夹逼定理得f’(x
0
)=0,因为x
0
是任意一点,所以f’(x)≡0,故f(x)≡常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/CsM4777K
0
考研数学一
相关试题推荐
随机事件A与B互不相容,0<P(A)<1,则下列结论中一定成立的是()
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。(Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使得P-1AP=A。
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向x轴负向无限伸展的平面图形,记为D。(Ⅰ)求D的面积A;(Ⅱ)求D绕直线x=1旋转一周所成的旋转体的体积V。
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f’(c)|≤2a+
计算二重积分xarctanydxdy,其中积分区域D是由抛物线y=x2和圆x2+y2=2及x轴在第一象限所围成的平面区域。
设连续型随机变量X的概率密度为F(x)=已知E(X)=2,P{1<X<3}=3/4,求:随机变量Y=eX的数学期望与方差。
设相互独立的随机变量X和Y均服从P(1)分布,则P{x=1|X+Y=2}的值为()
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2.证明:r(A)=2;
a,b取何值时,方程组有唯一解、无解、有无穷多个解?有无穷多个解时,求出其通解.
1+x2-ex2当x→0时是x的___________阶无穷小(填数字).
随机试题
农业产业一体化经营是第二次世界大战后发达国家农业走向现代化的重要组织形式,()不是主要的农业产业一体化经营形式。
什么叫裂纹?常见的裂纹有哪些?裂纹有什么危害?
女性,30岁,颜面和双下肢水肿伴少尿半年,查血压140/95mmHg,尿蛋白(+++),红细胞(++)/Hp,血Hb105g/L,胆固醇10.2mmol/L,白蛋白21g/L,补体C3下降,血Cr145μmol/L。本例最可能的诊断为
企业月度财务会计报告的保管期限为()。
某服装加工厂与外商签订了一份加工服装出口合同,该厂报关员到海关办理该批合同备案手续(纸质手册)时,应向海关提交的单证资料包括;
收入汇缴账户除向其基本存款账户或预算外资金财政专用存款户划缴款项外,只收不付,不得支取现金。()
下列关于中外合资经营企业组织机构的表述中,不符合规定的是()。
下列清盛京三陵的名称及墓主人对应正确的是()。
简述学前儿童心理发展的趋势。
某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是()。
最新回复
(
0
)