首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似. (Ⅱ)设A=,求可逆矩阵P,使得P-1AP=B.
(Ⅰ)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似. (Ⅱ)设A=,求可逆矩阵P,使得P-1AP=B.
admin
2021-01-14
18
问题
(Ⅰ)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似.
(Ⅱ)设A=
,求可逆矩阵P,使得P
-1
AP=B.
选项
答案
(Ⅰ)设A,B的特征值为λ
1
,λ
2
,…,λ
n
, 因为A,B可相似对角化,所以存在可逆矩阵P
1
,P
2
,使得[*] 于是P
1
-1
AP
1
=P
2
-1
BP
2
,或(P
1
P
2
-1
)A(P
1
P
2
-1
)=B, 令P=P
1
P
2
-1
,则P
-1
AP=B,即矩阵A,B相似. (Ⅱ)由|λE-A|=[*]=(λ+1)(λ一1)
2
=0得λ
1
=一1,λ
2
=λ
3
=1; 由|λE-B|=[*]=(λ+1)(λ一1)
2
=0得λ
1
=一1,λ
2
=λ
3
=1. 由E+A=[*]得 A的属于λ
1
=一1的线性无关特征向量为α
1
=[*] 由E—A=[*]得 A的属于特征值λ
2
=λ
3
=1的线性无关的特征向量为[*] 令P
1
=[*],则P
1
-1
AP
1
=[*] 由E+B=[*]得 B的属于λ
1
=一1的线性无关特征向量为β
1
=[*] 由E—B=[*]得 B的属于特征值λ
2
=λ
3
=1的线性无关的特征向量为β
2
=[*] 令P
2
=[*],则P
2
-1
BP
2
=[*] 故P=P
1
P
2
-1
=[*],使得P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/Cx84777K
0
考研数学二
相关试题推荐
(2003年试题,三)设函数问a为何值时f(x)在x=0处连续;a为何值时,x=0是f(x)的可去间断点?
设实二次型f(x1,x2,x3)=(x1一x2+x3)2+(x2+x3)2+(x1+ax3)2,其中a是参数•(I)求f(x1,x2,x3)=0的解;(Ⅱ)求f(x1,x2,x3)的规范形.
[2012年]已知函数f(x)=,记a=f(x).若x→0时,f(x)一a与xk是同阶无穷小,求常数k的值.
设A为n阶矩阵,证明:r(A*)=,其中n≥2.
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解。
设函数f(x)在x0处具有二阶导数,且f’(x0)=0,f’’(x0)≠0,证明当f’’(x0)>0,f(x)在x0处取得极小值。
求下列幂级数的收敛半径和收敛域.
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
设f(x)=∫01-cosxsint2dt,g(x)=,则当x→0时,f(x)是g(x)的().
设f(x,y)在有界闭区域D上二阶连续可偏导,且在区域D内恒有条件,则().
随机试题
以下选项中,当x为大于1的奇数时,值为0的表达式为()。
设总体X~N(μ,σ2),且σ2未知,x1,x2,…,xn为来自总体的样本,和S2分别是样本均值和样本方差,则检验假设H0:μ=μ0;H1:μ≠μ0采用的统计量表达式为__________.
《药品注册管理办法》(试行)中有关稳定性试验的叙述正确的是
根据《火灾事故调查规定》,当事人对火灾事故认定有异议的,可以自火灾事故认定书送达之日起()日内,向上一级公安机关消防机构提出书面复核申请。
根据所给的经济业务编制会计分录按上述工资总额的14%提取职工福利费。
有效教学的实质和核心是()。
一些贪官落马后,或痛斥权力让人堕落,或后悔当初入错行选错道、不该当官,或以官场“险恶”告诫子女“千万不要从政”。从政真的是“高危职业”吗?分明是为民服务尽责的公职岗位,怎么就成了误己误人的“陷阱”,甚至是杀人于无形的“凶器”?一朝腐败被捉便把所有的过错归罪
测验分数合成的方法有()
程序中有如下语句:for(inti=0;i<5;i++)cout<<*(p+i)<<",";能够依次输出int型一维数组DATA的前5个元素。由此可知,变量p的定义及初始化语句是______。
Forthispart,youareallowed30minutestowriteanessaybasedonthepicturebelow.Youshouldstartyouressaywithabrief
最新回复
(
0
)