首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在x=x0的某邻域U内存在连续的二阶导数. (I)设当h>0,(x0-h)∈U,(x0﹢h)∈U,恒有 f(x0)
设函数f(x)在x=x0的某邻域U内存在连续的二阶导数. (I)设当h>0,(x0-h)∈U,(x0﹢h)∈U,恒有 f(x0)
admin
2019-06-29
36
问题
设函数f(x)在x=x
0
的某邻域U内存在连续的二阶导数.
(I)设当h>0,(x
0
-h)∈U,(x
0
﹢h)∈U,恒有
f(x
0
)<
f(x
0
﹢h)﹢f(x
0
-h)], (*)
证明f
”
(x
0
)≥0;
(Ⅱ)如果
”
(x
0
)﹥0,证明必存在h﹥0,(x
0
-h)∈U,(x
0
﹢h)∈U,使(*)式成立.
选项
答案
(I)由条件,当h>0充分小,(x
0
±h)∈U,有 f(x
0
﹢h)-f(x
0
)﹢f(x
0
﹣h)-f(x
0
)>0. 则由拉格朗日中值定理,有 f
’
(ξ
2
)h﹢f
’
(ξ
1
)(-h)﹥0, 其中x
0
-h<ξ
1
<x
0
﹤ξ
2
<x
0
﹢h.又因为h>0,得 f
’
(ξ
2
)-f
’
(ξ
1
)>0. 再在区间[ξ
1
,ξ
2
]上用拉格朗日中值定理,有 f
”
(ξ)(ξ
2
-ξ
1
)﹥0, 其中x
0
-h<ξ
1
<ξ
2
<x
0
﹢h.由此推得f
”
(ξ)>0.再令h→0,得ξ→x
3
,并且得f
”
(x
0
)≥0. 证毕. (Ⅱ)由题设f
”
(x)在x=x
0
的邻域U内连续,且f
”
(x
0
)>0,故存在h>0,使x
0
-h,x
0
﹢h][*]U且在区间[x
0
-h,x
0
﹢h]内f
”
(x)>0.将f(x)按(x-x
0
)的幂展开的泰勒公式,有 f(x)=f(x
0
)﹢f
’
(x
0
)(x-x
0
)﹢[*]f
”
(ξ)(x-x
0
)
2
>f(x
0
)﹢f
’
(x
0
)(x-x
0
), 其中ξ∈(x,x
0
)(或(x
0
,x)),x∈[x
0
-h,x
0
﹢h,x≠x
0
.取x=(x
0
﹢h)∈U,得 f(x
0
﹢h)﹥f(x
0
)﹢f
’
(x
0
)h; 取x=(x
0
-h)∈U,得 f(x
0
-h)>f(x
0
)-f
’
(x
0
)h. 从而有 f(x
0
﹢h)﹢f(x
0
-h)>2f(x
0
), 即f(x
0
)<[*][f(x
0
﹢h)﹢f(x
0
-h)],故(*)式成立.证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/mOV4777K
0
考研数学二
相关试题推荐
设f(x)连续,且f(1)=1,则=_______
设D={(x,y)|x2+y2≤1},则=_________。
设z=xf(x+y)+g(xy,x2+y2),其中f,g分别阶连续可导和二阶连续可偏导,则=__________
=________.
设A为n阶矩阵,|A|≠0,A*为A的伴随矩阵.层为n阶单位矩阵,若A有特征值λ,则(A*)2+E必有特征值__________.
设f(x)为连续函数,且满足f(xt)dt=f(x)+xsinx,则f(x)=_______
已知二次型f(x1,x2,x3)=5x12+5x22+cx32—2x1x2+6x1x3-6x2x3的秩为2,则常数c=________.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解。
设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1。证明:(Ⅰ)存在ξ∈(0,1),使得f’(ξ)=1;(Ⅱ)存在η∈(-1,1),使得f"(η)+f’(η)=1。
设x3-3xy+y3=3确定y为x的函数,求函数y=y(x)的极值点.
随机试题
没有考虑到工作的结构性、领导权力大小等的影响,不能解释为什么具有不同特质的领导在各自的组织中均可以工作得非常出色,表明特质理论()的缺陷。
按分经治疗规律,手太阳经治疗
关于执行异议和复议,下列说法中正确的是:()
(2007年)一个完整的计算机系统应该指的是()。
根据合伙企业法律制度的规定,合伙协议未约定合伙企业利润分配和亏损分担比例的。合伙人之间分配利润和分担亏损的原则是()。
Mostpeoplewhotravellongdistancecomplainofjetlag.Jetlagmakesbusinesstravelerslessproductiveandmoreprone【C1】____
在梁启超的教育思想中,群学之基是
私放俘虏罪
设f(x)为R上不恒等于零的奇函数,且fˊ(0)存在,则函数
Recoveryfromjetlagcantakeaslongasadayforeverytimezonecrossed.Soifyou’reflyingeast-westforyourholidayoron
最新回复
(
0
)