首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
验证: 2阶对称矩阵的全体S3,对于矩阵的加法和数乘运算构成线性空间,并写出各个空间的一个基.
验证: 2阶对称矩阵的全体S3,对于矩阵的加法和数乘运算构成线性空间,并写出各个空间的一个基.
admin
2020-11-13
58
问题
验证:
2阶对称矩阵的全体S
3
,对于矩阵的加法和数乘运算构成线性空间,并写出各个空间的一个基.
选项
答案
任取A,B∈S
3
,k∈R,则A
T
=A,B
T
=B,从而可得(A+B)
T
=A
T
+B
T
=A+B,(kA)
T
=kA
T
=kA,所以A+B∈S
3
,M∈S
3
,即S
3
对于矩阵的加法和数乘运算封闭.并且满足线性空间的八条运算规律,故S
3
是线性空间.令C
1
=[*],易证C
1
,C
2
,C
3
是S
3
的一个基.
解析
转载请注明原文地址:https://kaotiyun.com/show/Dxx4777K
0
考研数学三
相关试题推荐
(14年)设随机变量X,Y的概率分布相同,X的概率分布为P{X=0}=,P{X=1}=,且X与Y的相关系数ρXY=.(Ⅰ)求(X,Y)的概率分布;(Ⅱ)求P{X+Y≤1}.
(1991年)试证明函数在区间(0,+∞)内单调增加.
已知线性方程组(1)a,b为何值时,方程组有解?(2)在方程组有解时,求出方程组的导出组的一个基础解系,并用它表示方程组的全部解.
(97年)设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,I为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
(14年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明:(Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b](Ⅱ)f(χ)dχ≤∫abf(χ)g(χ)dχ.
一商家销售某商品的价格满足关系式P=7-0.2x(万元/吨),x为销售量(单位:吨).商品的成本函数是C=3x+1(万元).若每销售一吨商品,政府要征税t(万元),求商品获得最大利润的销售量;
设A,B为同阶可逆矩阵,则().
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=().
[2008年]设银行存款的年利率为r=0.05,并依年复利计算,某基金会希望通过存款A万元,实现第一年提取19万元,第二年提取28万元,…,第n年提取(10+9n)万元,并按此规律一直提取下去,问A至少应为多少万元?
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记求:U和V的相关系数ρ.
随机试题
电容器充电时的电流,由小逐渐增大。()
患者,年轻男性,突发腹痛半小时就诊;既往胃溃疡、肾结石病史2年;查体:腹肌紧张,压痛、反跳痛。结合病史,该患者首先考虑
A、硫酸钡B、钆特醇C、优维显D、二氧化碳E、碘化油子宫输卵管造影用
保障计算机安全的对策有()。
我国某进口企业与某外商磋商进口纺织机械设备交易。经往来电传磋商,已就合同的基本条款初步达协议,但在我方最后所发的表示接受的电传中写有“以签署确认书为准”的字样。事后,外商拟就合同书要我方确认,但由于对某些条款我方认为需要修改,此时该设备的市场价格有下跌趋势
期货交易的功能包括()。
实验法的主要特点是【】
教师的教育专业素养除要求具有先进的教育理念、良好的教育能力,还要求具有一定的()
古人云:“言为心声。”而辩解就是心灵的一种表达。最常见的情况是,自己被诽谤、被误解、被流言所困扰……因此想用肺腑之言去澄清,去回击,去恢复自己或许受损的名声,去争回已经丢掉的面子……于是喋喋不休地说、唾沫飞溅地说、旁征博引地说、声情并茂地说……甚至因此唇枪
设A为四阶非零矩阵,且r(A*)=1,则().
最新回复
(
0
)