首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 A3×4X=b ① 有通解k1[1,2,0,-2]T+k2[4,-1,-1,-1]T+[1,0,-1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是______
已知非齐次线性方程组 A3×4X=b ① 有通解k1[1,2,0,-2]T+k2[4,-1,-1,-1]T+[1,0,-1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是______
admin
2019-05-14
47
问题
已知非齐次线性方程组
A
3×4
X=b ①
有通解k
1
[1,2,0,-2]
T
+k
2
[4,-1,-1,-1]
T
+[1,0,-1,1]
T
,则满足方程组①且满足条件x
1
=x
2
,x
3
=x
4
的解是______
选项
答案
[2,2,-1,-1]
T
解析
方程组①的通解为
由题设x
1
=x
2
,x
3
=x
4
得
解得k
1
=1,k
2
=0,代入通解得满足①及x
1
=x
2
,x
3
=x
4
的解为[2,2,-1,-1]
T
转载请注明原文地址:https://kaotiyun.com/show/E404777K
0
考研数学一
相关试题推荐
一条旅游巴士观光线共设10个站,若一辆车上载有30位乘客从起点开出,每位乘客都等可能地在这10个站中任意一站下车,且每个乘客不受其他乘客下车与否的影响,规定旅游车只在有乘客下车时才停车.求:(Ⅰ)这辆车在第i站停车的概率以及在第i站不停车的条件下
已知A是3×4矩阵,秩r(A)=1,若α1=(1,2,0,2)T,α2=(1,-1,a,5)T,α3=(2,a,-3,-5)T,α4=(-1,-1,1,a)T线性相关,且可以表示齐次方程组Aχ=0的任一解,求Aχ=0的基础解系.
已知α1,α2,α3是非齐次线性方程组3个不同的解,证明:(Ⅰ)α1,α2,α3中任何两个解向量均线性无关;(Ⅱ)如果α1,α2,α3线性相关,则α1-α2,α1-α3线性相关.
已知n维列向量α1,α2,…,αs非零且两两正交,证明α1,α2,…,αs线性无关.
设k为参数,试确定方程χ2+4χ=keχ的根的个数以及每个根所在的区间.
设A=,向量α=是矩阵A-1属于特征值λ0的特征向量,若|A|=-2,求a,b,c及λ0的值.
设A为3阶矩阵,α1,α2,α3是3维线性无关的列向量,其中α1是齐次方程组Aχ=0的解,又知Aα2=α1+2α2,Aα3=α1-3α2+2α3.(Ⅰ)求矩阵A的特征值与特征向量;(Ⅱ)判断A是否和对角矩阵相似并说明理由;(Ⅲ
证明n元非齐次线性方程组Aχ=b有解的充分必要条件是ATχ=0的解全是bTχ=0的解.
设A是m×n矩阵,如果齐次方程组Aχ=0的解全是方程b1χ1+b2χ2+…+bnχn=0的解,证明向量β=(b1,b2,…,bn)可由A的行向量线性表出.
随机试题
下列方法中,可用来治理卷材中等流淌的方法有()。
公文办理完毕后应整理归档保存,整理归档所形成的文书档案具有()
女性,20岁,体重50kg,头面、躯干、双上肢汽油火焰烧伤3小时入院。烧伤总面积56%,深Ⅱ度26%,Ⅲ度3%。病人烦躁不安,手足湿冷,心率140次/分,呼吸25次/分,伤后无尿。紧急处理应首先
【2012专业知识真题下午卷】工业企业厂房内,交流工频500V以下无遮栏的裸导体至地面的距离不应小于下列哪一项数值?()
某工程建设项目,网络计划如图5—1,网络计划的计划工期为84天。在施工过程中,由于业主直接原因、不可抗力因素和施工单位原因,对各项工作的持续时间产生一定的影响,其结果如表5—1(正数为延长工作天数,负数为缩短工作天数),由于工作的持续时间的变化,网
见票即付的汇票向付款人提示付款的期限是()。
人与人之间个性的差异主要体现在每个人
自2016年11月1日起,私家车将可按一定程序转化为网约车,加入专车运营。()
确定一个窗体大小的属性是()。
Thisisthefirstdraftofthebook.Pleasefeelperfectlyfreeto______it.
最新回复
(
0
)