首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2011年] 若二次曲面方程x2+3y2+z2+2axy+2xz+2yz=4经正交变换化为y12+4z12=4,则a=______.
[2011年] 若二次曲面方程x2+3y2+z2+2axy+2xz+2yz=4经正交变换化为y12+4z12=4,则a=______.
admin
2019-04-08
50
问题
[2011年] 若二次曲面方程x
2
+3y
2
+z
2
+2axy+2xz+2yz=4经正交变换化为y
1
2
+4z
1
2
=4,则a=______.
选项
答案
1
解析
所给方程的左端为一个二次型的表示式,其矩阵为
而二次型经正交变换化为y
1
2
+4z
1
2
,这说明二次型矩阵A的三个特征值为λ
1
=1,λ
2
=4,λ
3
=0.
于是 |A|=λ
1
λ
2
λ
3
=0=
由观察知,当a=1时,|A|的第1,3两行相等,有|A|=0,即a=1为所求.
事实上,易求得|A|=
=一(a一1).由|A|=0求得a=1.[img][/img]
转载请注明原文地址:https://kaotiyun.com/show/ED04777K
0
考研数学一
相关试题推荐
(2017年)函数f(x,y,z)=x2y+z2在点(1,2,0)处沿向量u=(1,2,2)的方向导数为()
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2。α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为三阶单位矩阵。(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B。
已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品。从甲箱中任取3件产品放入乙箱后,求:(Ⅰ)乙箱中次品件数X的数学期望;(Ⅱ)从乙箱中任取一件产品是次品的概率。
设两两相互独立的三事件A,B和C满足条件:ABC=,P(A)=P(B)=P(C)<,P(A∪B∪C)=则P(A)=________。
设半径为R的球之球心位于以原点为中心、a为半径的定球面上(2a>R>0,a为常数).试确定R为何值时前者夹在定球面内部的表面积为最大,并求出此最大值.
设f(x)具有连续的二阶导数,且
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示。
设A,B为同阶方阵,如果A,B相似,试证A,B的特征多项式相等;
求ydxdy,其中D是由L:(0≤t≤2π)与x轴围成的区域.
随机试题
具有清热解毒、疏风散邪的方剂是
A、脂溶性生物碱与酸成盐后易溶于水B、脂溶性生物碱与酸成盐后不溶于水C、脂溶性生物碱和生物碱盐都可溶于甲醇或乙醇D、游离生物碱易溶于亲脂性有机溶剂E、水溶液碱化后使生物碱游离析出用醇类溶剂提取法提取脂溶
均质杆AB长为l,重为W,受到如图所示的约束,绳索ED处于铅垂位置,A、B两处为光滑接触,杆的倾角为α,又CD=l/4,则A、B两处对杆作用的约束力大小关系为:
基坑内地基加固的主要目的有()。
项目生产条件分析主要是指项目建成投产后,对生产经营过程中所需要的物资条件和()条件进行的分析。
根据企业破产法律制度的规定,下列对和解协议效力的表述中,不正确的是()。
在社会主义经济中,社会总产品在分配给个人之前应首先进行哪些社会扣除?
公共政策的归宿在于()。
破窗现象:一个房子如果窗户破了,没有人去修补,隔不久,其他的窗户也会莫名其妙地被人打破,所以环境中的不良现象如果被放任存在,会诱使人们仿效,甚至变本加厉。根据上述定义,下列不属于破窗现象的是:
[*]
最新回复
(
0
)