首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(χ)为区间[0,1]上的非负连续函数. (1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积; (2)设f(χ)在(0,1)内可导,且f′(χ)>-
设y=f(χ)为区间[0,1]上的非负连续函数. (1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积; (2)设f(χ)在(0,1)内可导,且f′(χ)>-
admin
2019-08-23
63
问题
设y=f(χ)为区间[0,1]上的非负连续函数.
(1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积;
(2)设f(χ)在(0,1)内可导,且f′(χ)>-
,证明:(1)中的c是唯一的.
选项
答案
(1)S
1
(c)=cf(c),S
2
(c)=∫
c
1
f(t)dt=-∫
1
c
f(t)dt, 即证明S
1
(c)=S
2
(c),或cf(c)+∫
1
c
f(t)dt=0. 令φ(χ)=χ∫
1
χ
f(t)dt,φ(0)=φ(1)=0,根据罗尔定理,存在c∈(0,1),使得φ′(c)=0, 即cf(c)+∫
1
c
(t)dt=0,所以S
1
(c)=S
2
(c),命题得证. (2)令h(χ)=χf(χ)-∫
χ
1
f(t)dt,因为h′(χ)=2f(χ)+χf′(χ)>0,所以h(χ)在[0,1]上为单调函数,所以(1)中的c是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/EoA4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,=1,f(1)=0.证明:存在η∈,使得f(η)=η;
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aa1=α1+α2+α3,Aa2=2α2+α3,Aa3=2α2+3α3.(1)求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.(2)求A的特征值.
利用代换u=ycosx将微分方程y"cosx-2y’sinx+3ycosx=ex化简,并求出原方程的通解.
证明:方程xa=lnx(a<0)在(0,+∞)内有且仅有一个根.
求微分方程y’’+4y’+4y=eax的通解.
设f(x)在[0,1]上二阶连续可导且f(0)=f(1),又|f"(x)|≤M,证明:|f’(x)|≤
椭球面S1是椭圆绕x轴旋转一周而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕x轴旋转一周而成。[img][/img]求S1与S2之间的立体体积。
函数与直线x=0,x=t(t>0)及y=0围成一曲边梯形。该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t)。求的值;
设f(x,y)连续,且f(x,y)=,其中D是由,x=1,y=2所围成的区域,则f(x,y)=______。[img][/img]
随机试题
哪个信息安全评估标准给出了关于IT安全的保密性、完整性、可用性、审计性、认证性、可靠性6个方面含义,并提出了以风险为核心的安全模型
从性质上讲,房产税是一种()
我国的法定节假日共计_________。
尿内儿茶酚胺及VMA升高最常见于
A.胸式呼吸B.腹式呼吸C.潮式呼吸D.平静呼吸E.用力呼吸以膈肌收缩为主的呼吸运动称为()
含碳量为0.8%的碳素钢属于()。
福建工艺品的“三宝”是()。
蛋白质的化学性消化是指蛋白质在胃蛋白酶及由胰液和小肠黏膜细胞分泌的多种蛋白酶及肽酶的共同作用下,水解为氨基酸的过程。()
张某委托刘某购买山地车一辆,刘某到商场后发现山地车脱销,担心张某急需使用,遂为之购买自行车一辆,张某拒收,刘某诉至法院。下列选项中正确的是:
晏阳初是我国著名的教育家,主持待了中华平民教育促进总会所进行的河北定县乡村教育实验,出版了
最新回复
(
0
)