首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵 (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P-1AP为对角矩阵.
设n阶矩阵 (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P-1AP为对角矩阵.
admin
2020-03-16
94
问题
设n阶矩阵
(1)求A的特征值和特征向量;
(2)求可逆矩阵P,使P
-1
AP为对角矩阵.
选项
答案
(1)1°当b≠0时, |λE-A|=[*]=[λ-1-(n-1)b][λ-(1-b)]
n-1
. 故A的特征值为λ
1
=1+(n-1)n,λ
2
=…=λ
n
=1-b. 对于λ
1
=1+(n-1)b,设对应的一个特征向量为ξ
1
,则 [*] ξ
1
=[1+(n-1)b]ξ
1
解得ξ
1
=(1,1,…,1)
T
,所以,属于λ
1
的全部特征向量为 kξ
1
=k(1,1,…,1)
T
,其中k为任意非零常数. 对于λ
2
=…=λ
n
=1-b,解齐次线性方程组[(1-b)E-A]x=0,由 [*] 解得基础解系为ξ
2
=(1,-1,0,…,0)
T
,ξ
3
=(1,0,-1,…,0)
T
,…,ξ
n
=(1,0,0,…,-1)
T
.故属于λ
2
=…=λ
n
的全部特征向量为 k
2
ξ
2
+k
3
ξ
3
+…+k
n
ξ
n
,其中k
1
,k
2
,…,k
n
为不全为零的任意常数. 2°当b=0时,A=E,A的特征值为λ
1
=λ
2
=…=λ
n
=1,任意n维非零列向量均是特征向量. (2)1°当b≠0时,A有n个线性无关的特征向量,令矩阵P=[ξ
1
,ξ
2
,…,ξ
n
],则有 P
-1
AP=diag(1+(n-1)b,1-b,…,1-b). 2°当b=0时,A=E,对任意n阶可逆矩阵P,均有P
-1
AP=E.
解析
转载请注明原文地址:https://kaotiyun.com/show/FI84777K
0
考研数学二
相关试题推荐
设B=2A一E,证明:B2=E的充分必要条件是A2=A.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点试求曲线L的方程;
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
求
已知A,B是3阶方阵,A≠O,AB=O,证明:B不可逆.
[2008年]设a,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:(I)秩(A)≤2;(Ⅱ)若α,β线性相关,则秩(A)<2.
[2005年]设D={(x,y)∣x2+y2≤√2,x≥0,y≥0),[1+x2+y2]表示不超过1+x2+y2的最大整数,计算二重积分xy[1+x2+y2]dxdy.
设求f(x)的间断点,并说明间断点的类型.
设常数a>0,函数g(x)在区间[一a,a]上存在二阶导数,且g"(x)>0.令h(x)=g(x)+g(一x),证明:在区间[0,a]上h’(x)≥0,且仅当x=0时,h’(x)=0;
设f(x)在x=0的某邻域内二阶可导,且求f(0),f’(0),f”(0)及
随机试题
下列各项不属于金融期货交易制度的是()。
______,theprofessorisstilltryingtolearnanewlanguage.
骨折急救处理中哪项不恰当()
中央型肺癌最早出现的征象是( )
李大伟是M城市商业银行的董事,其妻张霞为S公司的总经理,其子李小武为L公司的董事长。2009年9月,L公司向M银行的下属分行申请贷款1000万元。其间,李大伟对分行负责人谢二宝施加压力,令其按低于同类贷款的优惠利息发放此笔贷款。L公司提供了由保证人陈富提供
根据城市经济学原理,调控城市规模的最好手段是()
计算机处于工作状态下的重新启动称为加电启动。 ( )
Internet上许多复杂网络和不同类型计算机之间能够互相通信的基础是()。
增值税的优点有()。
对下列句子中加下划线字的意义和用法判断正确的是()。①其真无马邪?其真不知马也②今存其本,不忍废③若所市于人者④若为佣耕,何富贵也
最新回复
(
0
)