首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(-∞,+∞)内连续,其导数图形如图所示,则在(-∞,+∞)内
设函数f(x)在(-∞,+∞)内连续,其导数图形如图所示,则在(-∞,+∞)内
admin
2016-01-23
55
问题
设函数f(x)在(-∞,+∞)内连续,其导数图形如图所示,则在(-∞,+∞)内
选项
A、函数f(x)有三个极值点,曲线y=f(x)有两个拐点
B、函数f(x)有四个极值点,曲线y=f(x)有一个拐点
C、函数f(x)有三个极值点,曲线y=f(x)有一个拐点
D、函数f(x)有四个极值点,曲线y=f(x)有两个拐点
答案
B
解析
本题考查函数的极值、拐点问题——见到求函数的单调区间、极值,函数曲线的凹凸区间、拐点问题,就想“四步八个字”——定域、找点、分段、判断,其关键是要先找出驻点和f’(x)不存在的点及f’’(x)的零点和f’’(x)不存在的点.
解:由题设所给y=f’(x)的图形可看出,f’(x
1
)=
f’(x
2
)=f’(x
3
)=0,f(x)在x=0处不可导,即f(x)可能有4个极值点,且曲线y=f’(x)在x轴上方时f’(x)>0,在x轴下方时f’(x)<0,可见这四个点都是极值点(x
1
,x
2
为极大值点,原点与x
3
为极小值点,为什么?)
仍由y=f’(x)的图形可看出,f’’(x
4
)=0(因x
4
是f’(x)的驻点),f(x)在x=0处的二阶导数不存在,即曲线y=f(x)可能有两个拐点.因为除了x=0外,y=f’(x)处处光滑,存在不垂直于x轴的切线,故可推测f(x)除x=0外具有二阶导数,因此在f’(x)的严格单调增加区间内有f’’(x)>0;在f’(x)严格单调减少区间内有f’’(x)<0,可见(0,f(0))不是曲线y=f(x)的拐点,(x
4
,f(x
4
))是曲线y=f(x)的拐点(为什么?请读者结合y=f’(x)的图形思考,并找出曲线y=f(x)的凹凸区间).
转载请注明原文地址:https://kaotiyun.com/show/GCw4777K
0
考研数学一
相关试题推荐
设A为四阶矩阵,|A*|=8,则=________.
设齐次线性方程组为正定矩阵,求a,并求当时,XTAX的最大值。
设A为m×n阶实矩阵,且r(A)=n,证明:ATA的特征值全大于零。
利用变换x=arctant将方程cos4x+cos2x(2-sin2x)+y=tanx化为y关于t的方程,并求原方程的通解。
设α1,α2,α3,…,αm与β1,β2,β3,…βs为两个n维向量组,且r(α1,α2,α3,…,αm)=r(β1,β2,β3,…βs)=r,则()。
当x→0时,与axn是等价无穷小,则()
设正交矩阵,其中A是3阶矩阵,λ≠0,且A2=3A。求k1,k2,k3的值;
设f(x)连续可导,f(0)=0,f’(0)≠0,F(x)=(x2-t2)f(t)dt,且当x→0时,F’(x)与xk为同阶无穷小,求k.
设z=f(x,y)二阶连续可偏导,=2,且f(x,0)=1,f’y(x,0)=x,求f(x,y).
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{丨X丨
随机试题
A.结膜方式B.转移方式C.吸性方式D.渗透方式E.黏附方式字迹材料写在纸上时,经外界一定压力填充在纸张的表面孔隙内。牢固度差,不耐摩擦。这种最不耐久的结合方式是
EasyWaystoGreenupYourLife①Eatingmeatproducesgreenhousegasemissions(排放).Ifyoucan’tgiveupmeatcompletely
预制混凝土梁(板)安装的技术要求中,下部构造条件不包括()。
利润表是反映企业在( )财务成果的报表。
下列选项中不属于征信活动特点的是()。
高中化学课程中,侧重反映化学学科的核心研究领域和核心知识的是()。
4岁的小红知道小明是自己的亲哥哥,却不知道自己是小明的妹妹。这种现象体现了儿童思维具有()。
山水本无知,蝶雁亦无情。但它们对待人类最公平,一视同仁,既不因达官显贵而呈欢卖笑,也不因山野渔樵而吝丽啬彩。那么何以无知无情的自然景物会异彩纷呈、美不胜收,使人深入其境而流连忘返呢?______________对于这个问题,历来是众说纷纭,莫衷一是。填入画
•Readthetexttakenfromabusinessmagazine.•Choosethebestsentencetofilleachofthegaps.•Foreachgap(9-14),m
Newtechnologylinkstheworldasneverbefore.Ourplanethasshrunk.It’snowa"globalvillage"wherecountriesareonlyseco
最新回复
(
0
)