首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(aij)n×m的秩为n,记A的元素aij的代数余子式为Aij,并记A的前r行组成的r×n矩阵为B,证明:向量组 α1=(Ar+1,1,…,Ar+1,n)T α2=(Ar+2,1,…,Ar+2,n)T … αn—
设矩阵A=(aij)n×m的秩为n,记A的元素aij的代数余子式为Aij,并记A的前r行组成的r×n矩阵为B,证明:向量组 α1=(Ar+1,1,…,Ar+1,n)T α2=(Ar+2,1,…,Ar+2,n)T … αn—
admin
2018-11-22
108
问题
设矩阵A=(a
ij
)
n×m
的秩为n,记A的元素a
ij
的代数余子式为A
ij
,并记A的前r行组成的r×n矩阵为B,证明:向量组
α
1
=(A
r+1,1
,…,A
r+1,n
)
T
α
2
=(A
r+2,1
,…,A
r+2,n
)
T
…
α
n—r
=(A
n1
,…,A
nn
)
T
是齐次线性方程组Bx=0的基础解系.
选项
答案
由于A的行向量组线性无关,故B的行向量组线性无关,→r(B)=r,→方程组Bx=0的基础解系含n一r个向量,所以,要证明α
1
,α
2
,…,α
n—r
是方程组Bx=0的基础解系,只要证明α
1
,α
2
,…,α
n—r
是Bx=0的线性无关解向量即可.首先,由于[*]a
ij
A
ij
=0(i=1,2,…,r;k=r+1,…,n),故α
1
,α
2
,…,α
n—r
都是方程组Bx=0的解向量;其次,由于|A
*
|=|A|
n—1
≠0,知A
*
的列向量组线性无关,而α
1
,…,α
n—k
是A
*
的后n一r列,故α
1
,…,α
n—k
线性无关,因此α
1
,…,α
n—k
是Bx=0的线性无关解向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/GEM4777K
0
考研数学一
相关试题推荐
计算曲线积分I=[φ(y)cosx-πy]dx+[φ’(y)sinx-π]dy。其中φ(y)具有连续的导数,曲线Г为从A(π,2)到B(3π,4)在直线AB下方的任意路径,该曲线与直线AB所围成的区域面积为2。
已知总体X的概率密度f(x)=(λ>0),X1,X2,…,Xn是来自总体X的简单随机样本,Y=X2。求Y的数学期望E(Y);
若曲线积分∫在区域D={(x,y)|x2+y2<1}内与路径无关,则a=_______.
计算,其中∑为圆柱面x2+y2=1及平面z=x+2,z=0所围立体的表面.
已知曲线积分∫L[excosy+yf(x)]dx+(x3-exsiny)dy与路径无关且f(x)有连续的导数,则f(x)=________
级数的和为_________.
设+yf(x+y),其中f具有二阶连续导数,求
设幂级数在x=2条件收敛,则幂级数的收敛域为_______.
(02年)设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,B均为实对称矩阵时,试证(1)的逆命题成立.
设有齐次线性方程组AX=0与BX=0,其中A,B为m×n矩阵,现有4个命题:①若AX=0的解均是BX=0的解,则R(A)≥R(B);②若R(A)≥R(B),则AX=0的解均是BX=0的解;③若AX=0与BX=0同解,则R(A)=R(B);④若R(A
随机试题
原告A先生与被告B女士为夫妻,他们在甲国缔结了一项合同,这项合同约定他们在乙国进行离婚诉讼时,双方如何分担责任,如规定丈夫不承担对孩子的监护义务等。审理本案的乙国法官认为:“当一个国家的法院被请求执行在另一个国家缔结的合同时,问题不仅仅在于该合同按照同缔结
该患者最可能的诊断是血清C,水平有鉴别诊断意义,该患者的血清C,水平是
Ⅳ型高脂蛋白血症是指空腹血浆中
下列不是肿瘤的原因的是
A.疏散肺经风热B.透达肝经郁热C.辛凉散邪利咽D.清利头目利咽E.辛凉解表疏肝薄荷在养阴清肺汤中的作用是()
贝利:罗纳尔多:巴西
设A,B相互独立,P(A)=0.7,P(A∪B)=0.88。求P(A-B)。
邓小平指出:“一个党,一个国家,一个民族,如果一切从本本出发,思想僵化,迷信盛行,那它就不能前进,它的生机就停止了,就要亡党亡国。”这段话突出强调了
Readthetextbelowaboutjobadvertisement.Inmostofthelines(41-52)thereisoneextraword.Itiseithergrammaticallyin
A、Theymustpayoffthetuitionfortheireducation.B、Theymusthavethemilitarytraining.C、Theymusttakepartincollegeco
最新回复
(
0
)