首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(aij)n×m的秩为n,记A的元素aij的代数余子式为Aij,并记A的前r行组成的r×n矩阵为B,证明:向量组 α1=(Ar+1,1,…,Ar+1,n)T α2=(Ar+2,1,…,Ar+2,n)T … αn—
设矩阵A=(aij)n×m的秩为n,记A的元素aij的代数余子式为Aij,并记A的前r行组成的r×n矩阵为B,证明:向量组 α1=(Ar+1,1,…,Ar+1,n)T α2=(Ar+2,1,…,Ar+2,n)T … αn—
admin
2018-11-22
85
问题
设矩阵A=(a
ij
)
n×m
的秩为n,记A的元素a
ij
的代数余子式为A
ij
,并记A的前r行组成的r×n矩阵为B,证明:向量组
α
1
=(A
r+1,1
,…,A
r+1,n
)
T
α
2
=(A
r+2,1
,…,A
r+2,n
)
T
…
α
n—r
=(A
n1
,…,A
nn
)
T
是齐次线性方程组Bx=0的基础解系.
选项
答案
由于A的行向量组线性无关,故B的行向量组线性无关,→r(B)=r,→方程组Bx=0的基础解系含n一r个向量,所以,要证明α
1
,α
2
,…,α
n—r
是方程组Bx=0的基础解系,只要证明α
1
,α
2
,…,α
n—r
是Bx=0的线性无关解向量即可.首先,由于[*]a
ij
A
ij
=0(i=1,2,…,r;k=r+1,…,n),故α
1
,α
2
,…,α
n—r
都是方程组Bx=0的解向量;其次,由于|A
*
|=|A|
n—1
≠0,知A
*
的列向量组线性无关,而α
1
,…,α
n—k
是A
*
的后n一r列,故α
1
,…,α
n—k
线性无关,因此α
1
,…,α
n—k
是Bx=0的线性无关解向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/GEM4777K
0
考研数学一
相关试题推荐
设B是秩为2的5×4矩阵,α1=(1,1,2,3)T,α2=(-1,1,4,-1)T,α3=(5,-1,-8,9)T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基。
设二维随机变量(X,Y)的概率密度为求:(X,Y)的边缘概率密度fX(x),fY(y);
设A为n阶实对称正交矩阵,且1为A的r重特征根,则|3E-A|=_______。
函数y=()
微分方程x2y"+3xy’+y=0有极值y(1)=2的特解y(x),则y(x)=___________.
设A为三阶实对称矩阵,ξ=为方程组(2E—A)X=0的一个解,|E+A|=0,则A=_________.
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则()
求幂级数的收敛域,并求其和函数.
设α为常数,则级数
随机试题
中、小功率的电动机短路保护时,应使用熔断器或热继电器。()
胎儿生长受限分为内因性均称型和外因性不匀称型两类。()
疳证的主要临床表现包括
下列金融机构中,可以担任股票承销人的有()。
工程建设监理实施细则不包括()。
甲公司自行建造某项生产用大型设备,该设备由A、B、C、D四个部件组成。建造过程中发生外购设备和材料成本7320万元,人工成本1200万元,资本化的借款费用1920万元,安装费用1140万元,为达到正常运转发生测试费600万元,外聘专业人员服务费360万元,
根据《中华人民共和国教育法》,下列不属于设立学校及其他教育机构必须具备的基本条件是()。
16世纪意大利的音乐创作中,被称为“教会音乐的救星”的罗马乐派代表是()。
有如下程序:#includeusingnameespacestd;classBase{private:voidfun1()const{eout
JourneyinCatastrophes:ThreeFormsofViolentStormsI.WindsandstormsA.Winds’movinginviolentstorms—bringingabout
最新回复
(
0
)