首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(aij)n×m的秩为n,记A的元素aij的代数余子式为Aij,并记A的前r行组成的r×n矩阵为B,证明:向量组 α1=(Ar+1,1,…,Ar+1,n)T α2=(Ar+2,1,…,Ar+2,n)T … αn—
设矩阵A=(aij)n×m的秩为n,记A的元素aij的代数余子式为Aij,并记A的前r行组成的r×n矩阵为B,证明:向量组 α1=(Ar+1,1,…,Ar+1,n)T α2=(Ar+2,1,…,Ar+2,n)T … αn—
admin
2018-11-22
114
问题
设矩阵A=(a
ij
)
n×m
的秩为n,记A的元素a
ij
的代数余子式为A
ij
,并记A的前r行组成的r×n矩阵为B,证明:向量组
α
1
=(A
r+1,1
,…,A
r+1,n
)
T
α
2
=(A
r+2,1
,…,A
r+2,n
)
T
…
α
n—r
=(A
n1
,…,A
nn
)
T
是齐次线性方程组Bx=0的基础解系.
选项
答案
由于A的行向量组线性无关,故B的行向量组线性无关,→r(B)=r,→方程组Bx=0的基础解系含n一r个向量,所以,要证明α
1
,α
2
,…,α
n—r
是方程组Bx=0的基础解系,只要证明α
1
,α
2
,…,α
n—r
是Bx=0的线性无关解向量即可.首先,由于[*]a
ij
A
ij
=0(i=1,2,…,r;k=r+1,…,n),故α
1
,α
2
,…,α
n—r
都是方程组Bx=0的解向量;其次,由于|A
*
|=|A|
n—1
≠0,知A
*
的列向量组线性无关,而α
1
,…,α
n—k
是A
*
的后n一r列,故α
1
,…,α
n—k
线性无关,因此α
1
,…,α
n—k
是Bx=0的线性无关解向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/GEM4777K
0
考研数学一
相关试题推荐
已知α1=(1,2,1)T,α2=(1,1,a)T分别是三阶实对称不可逆矩阵A的属于特征值λ1=1与λ2=-1的特征向量。若β=(8,0,10)T,试求Akβ。
当a,b取何值时,方程组有唯一解,无解,有无穷多解?当方程组有解时,求通解。
计算曲线积分I=[φ(y)cosx-πy]dx+[φ’(y)sinx-π]dy。其中φ(y)具有连续的导数,曲线Г为从A(π,2)到B(3π,4)在直线AB下方的任意路径,该曲线与直线AB所围成的区域面积为2。
已知二次型f(x1,x2,x3)=xTAx=2x12+2x22+ax32+4x1x3+2tx2x3经正交变换x=Py可化成标准形f=y12+2y22+7y32,则t=_______。
设A,B为n阶矩阵,则下列结论正确的是().
已知曲线积分∫L[excosy+yf(x)]dx+(x3-exsiny)dy与路径无关且f(x)有连续的导数,则f(x)=________
点(1,2,3)到直线的距离为_________
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体的体积为试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=的解.
设A为n阶实对称矩阵,其秩为r(A)=r.举一个三阶矩阵说明对非对称矩阵上述命题不正确.
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.(1)求导弹运行的轨迹满足的微分方程及初始条件;(2)导弹运行方程.
随机试题
前人称为“疮家圣药”的药物是
水电解质代谢和酸碱平衡失调的治疗原则是什么?
关于影像增强器结构功能的组合,不正确的是
巴豆内服的剂量为
利用每股收益无差别点法进行资本结构决策分析时,下列表述正确的有()。
清宴舫属于园林建筑中的代表,它位于()。
下列不需要设定和实施行政许可的是()。
December1,2006JessicaRobinson25MillerRoadSacramento,CA95852DearMs.Robinson,Werecentlyreceivedanorderofyour
Rewardsforshareholders1.Theywillbeabletotrythecompany’s______newproduct.2.Theywillalsoreceivea______
A、Theshorterhourstheywork,thehigherpaytheycanenjoy.B、Themoretheywork,thelessleisuretheycanenjoy.C、Theshort
最新回复
(
0
)