首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),令向量组(Ⅰ):α1,α2,…,αn;(Ⅱ):β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则( ).
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),令向量组(Ⅰ):α1,α2,…,αn;(Ⅱ):β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则( ).
admin
2019-07-24
14
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
),B=(β
1
,β
2
,…,β
n
),AB=(γ
1
,γ
2
,…,γ
n
),令向量组(Ⅰ):α
1
,α
2
,…,α
n
;(Ⅱ):β
1
,β
2
,…,β
n
;(Ⅲ):γ
1
,γ
2
,…,γ
n
,若向量组(Ⅲ)线性相关,则( ).
选项
A、向量组(Ⅰ)与向量组(Ⅱ)都线性相关
B、向量组(Ⅰ)线性相关
C、向量组(Ⅱ)线性相关
D、向量组(Ⅰ)与(Ⅱ)至少有一个线性相关
答案
D
解析
当向量组(Ⅰ)线性相关时,r(A)<n,由r(AB)≤r(A)得r(AB)<n,即向量组(Ⅲ)线性相关;
同理,当向量组(Ⅱ)线性相关时,r(B)<n,由r(AB)≤r(B)得r(AB)<n即向量组(Ⅲ)线性相关,应选(D).
转载请注明原文地址:https://kaotiyun.com/show/GMc4777K
0
考研数学一
相关试题推荐
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1-θ)2,EX=2(1-θ)(0为未知参数).(Ⅰ)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
设随机变量X在区间(0,1)上服从均匀分布,当X取到χ(0<χ<1)时,随机变量Y等可能地在(χ,1)上取值.试求:(Ⅰ)(X,Y)的联合概率密度;(Ⅱ)关于Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}.
设二维正态随机变量(X,Y)的概率密度为f(χ,y),已知条件概率密度fX|Y(χ|y)=和fY|X(y|χ)=B.试求:(Ⅰ)常数A和B;(Ⅱ)fX(χ)和fY(y);(Ⅲ)f(χ,y).
设随机变量X在区间(1,3)上服从均匀分布,而Y在区间(X,3)上服从均匀分布.试求:(Ⅰ)随机变量X和Y的联合概率密度f(χ,y);(Ⅱ)随机变量Y的概率密度fY(y).
已知齐次方程组(Ⅰ)解都满足方程χ1+χ2+χ3=0,求a和方程组的通解.
已知线性方程组有解(1,-1,1,-1)T.(1)用导出组的基础解系表示通解;(2)写出χ2=χ3的全部解.
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________。
设a,b,c为待定常数,则微分方程y"-3y’+2y=3x-2ex的特解形式为()
方程y’"+2y"=x2+xe-2x的特解形式为()。
随机试题
某机场工程实行公开竞争性招标,招标公告中要求投标者应是具有一级资质等级的施工企业。在开标会上,共有12家参与投标的施工企业或联合体有关人员参加,此外还有市招标办公室、市公证处法律顾问以及业主方的招标委员会全体成员参加。开标前,公证处提出要对各投标单位的资质
(2019年聊城茌平区)学生作为一种影响因素,主要从()两方面影响学与教的过程。
领导者影响力的来源有职位权力与个人权力,下列属于职位权力的是()
下列属于毛泽东新民主主义革命理论的内容有()
Thereasonwhyhefailedintheexamwasthathewasoftenabsent-mindedinclass.
关于生长发育的规律,不正确的描述是()
下列关于注销工程监理企业资质情形的说法,正确的有()。
目前国内普遍实行的()模式决定了劳务分包的普遍性。
下列关于模式分解的叙述中,正确的是
铜鼓(bronzedrum)文化是中国南方地区典型的文化代表。在古代,铜鼓多用于祭拜、出征仪式(deploy-ingritual)和庆祝活动。它是激动人心的打击乐器(percussioninstrument),给人们带来极大的精神鼓舞。在战场上,铜鼓
最新回复
(
0
)