设n阶非零实方阵A的伴随矩阵为A*,且A*=AT.证明|A|≠0.

admin2021-11-09  26

问题 设n阶非零实方阵A的伴随矩阵为A*,且A*=AT.证明|A|≠0.

选项

答案AAT=AAT=|A|E,若|A|=0,则得AAT=0,其(i,i)元素为[*]aik=0(i,k=1,2,…,n)[*]A=0,这与A≠0矛盾.

解析
转载请注明原文地址:https://kaotiyun.com/show/HMy4777K
0

随机试题
最新回复(0)