首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(12年)已知曲线L:其中函数f(t)具有连续导数,且f(0)=0, f’(t)>0(0<t<).若曲线L的切线与x轴的交点到切点的距离恒为1,求函数f(t)的表达式,并求以曲线L及x轴和y轴为边界的区域的面积.
(12年)已知曲线L:其中函数f(t)具有连续导数,且f(0)=0, f’(t)>0(0<t<).若曲线L的切线与x轴的交点到切点的距离恒为1,求函数f(t)的表达式,并求以曲线L及x轴和y轴为边界的区域的面积.
admin
2019-03-07
98
问题
(12年)已知曲线L:
其中函数f(t)具有连续导数,且f(0)=0,
f’(t)>0(0<t<
).若曲线L的切线与x轴的交点到切点的距离恒为1,求函数f(t)的表达式,并求以曲线L及x轴和y轴为边界的区域的面积.
选项
答案
曲线L的切线斜率[*].切线方程为 [*] 由于f(0)=0,所以f(t)=ln(sect+tant)一sint. 因为f(0)=0,[*],所以以曲线L及x轴和y轴为边界的区域是无界区域,其面积为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/HX04777K
0
考研数学一
相关试题推荐
设A是n阶矩阵(n≥2),证明:(Ⅰ)当n=2时,(A*)*=A;(Ⅱ)当n≥3时,(A*)*=|A|n-1A。
设A,B均为n阶矩阵,且E-AB可逆,证明E-BA也可逆。
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α1=2α2-α3,若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
讨论a,b为何值时,方程组无解?有解?有解时写出全部解。
设矩阵A是秩为2的四阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2-α3=(2,0,-5,4)T,α2+2α3=(3,12,3,3)T,α3-2α1=(2,4,1,-2)T,则方程组Ax=b的通解x=()
(2004年)设函数f(x)连续,且f′(0)>0,则存在δ>0使得()
(2003年)某建筑工程打地基时,需用汽锤将桩打进土层。汽锤每次击打,都将克服土层对桩的阻力而做功。设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k>0)。汽锤第一次击打将桩打进地下am。根据设计方案,要求汽锤每次击打桩时所做的功与前一次
设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,x2<y<}上服从均匀分布,令(Ⅰ)写出(X,Y)的概率密度;(Ⅱ)问U与X是否相互独立?并说明理由;(Ⅲ)求Z=U+X的分布函数F(z)。
设随机变量X与Y相互独立,且E(X)与E(Y)存在,记U=max{X,Y},V=min{X,Y},则E(UV)=()
随机试题
Wedon’tbelievetheyoungmanis________offinishingsuchadifficulttask.
最容易损伤脊髓的外伤是
甲将其1辆汽车出卖给乙,约定价款30万元。乙先付了20万元,余款在6个月内分期支付。在分期付款期间,甲先将汽车交付给乙,但明确约定付清全款后甲才将汽车的所有权移转给乙。嗣后,甲又将该汽车以20万元的价格卖给不知情的丙,并以指示交付的方式完成交付。下列哪一表
进口设备离岸价格是()。
水利工程建设监理工程师实行()管理制度。
在施工成本管理的各类措施中,一般不需增加费用,而且是其他各类措施的前提和保障的是()。
根据合同法律制度的规定,下列合同权利义务终止的情形中,属于债务法定抵销的是()。
马克思说:“如果物没有用。那么其中包含的劳动也就没有用,不能算是劳动,因此不形成价值。”这段话说明()
调制解调器(Modem)的主要技术指标是数据传输速率,它的度量单位是_______。
TheWTOmeeting______withnoagreementonlaunchingabroadroundoftradeliberalizationnegotiations.
最新回复
(
0
)