首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)﹦(x1﹢x2-2x3)2﹢[-3x1﹢(a-1)x2﹢7x3]2﹢(x1﹢ax3)2正定,则参数a的取值范围是( )
设二次型f(x1,x2,x3)﹦(x1﹢x2-2x3)2﹢[-3x1﹢(a-1)x2﹢7x3]2﹢(x1﹢ax3)2正定,则参数a的取值范围是( )
admin
2019-01-22
28
问题
设二次型f(x
1
,x
2
,x
3
)﹦(x
1
﹢x
2
-2x
3
)
2
﹢[-3x
1
﹢(a-1)x
2
﹢7x
3
]
2
﹢(x
1
﹢ax
3
)
2
正定,则参数a的取值范围是( )
选项
A、a﹦-2
B、a﹦-3
C、a>0
D、a为任意值
答案
D
解析
方法一:f(x
1
,x
2
,x
3
)是平方和的形式,所以f(x
1
,x
2
,x
3
)≥0。
上述方程组的系数行列式为
﹦(a﹢2)
2
﹢1>0,所以a取任意值,上述方程组都有唯一零解,即对任意的x≠0,都有f(x
1
,x
2
,x
3
)>0,f正定。故本题选D。
方法二:
f(x
1
,x
2
,x
3
)﹦[x
1
﹢x
2
-2x
3
,-3x
1
﹢(a-1)x
2
﹢7x
3
,x
1
﹢ax
3
]
﹦(x
1
,x
2
,x
3
)
﹦x
T
B
T
Bx﹦x
T
Ax,
其中A﹦B
T
B且A
T
﹦A。
|B|
﹦(a﹢2)
2
﹢1>0,
其中a为任意值,所以对任意的a,矩阵B均可逆,则A﹦B
T
TB正定,f(x
1
,x
2
,x
3
)是正定二次型。故本题选D。
本题考查正定二次型的判定。若要判断二次型正定,则应给出证明,常用的方法为二次型正定的定义或充分必要条件。二次型正定的定义:设有二次型f(x)﹦x
T
Ax,如果对于任何x≠O,都有f(x)>0,则称f为正定二次型。二次型f(x)﹦x
T
Ax正定的充分必要条件:①A的正惯性指数为n,其中n为向量x的维数;②A的特征值均大于0;③A与单位矩阵E合同;④存在可逆矩阵P,使得A﹦P
T
P;⑤的所有顺序主子式全大于0。
转载请注明原文地址:https://kaotiyun.com/show/HfM4777K
0
考研数学一
相关试题推荐
下列函数中是某一随机变量的分布函数的是
设二维离散型随机变量(X,Y)的联合概率分布为试求:(I)X与Y的边缘分布律,并判断X与Y是否相互独立;(Ⅱ)P{X=Y}.
设是正定矩阵,其中A,B分别是m,n阶矩阵.记(1)求PTDP.(2)证明B一CTA-1C正定.
(I)设X与Y相互独立,且X~N(5,15),Y—χ2(5),求概率P{X一5>};(Ⅱ)设总体X~N(2.5,62),X1,X2,X3,X4,X5是来自X的简单随机样本,求概率P{(1.3<<3.5)∩(6.3<S2<9.6)}.
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并利用泊松定理求出α的近似值(e-5=0.007).
设φ(x)在(0,+∞)有连续导数,φ(π)=1.试确定φ(x),使积分在x>0与路径无关,并求当A,B分别为(1,1),(π,π)时的积分值.
求下列空间中的曲线积分I=(x2一yz)dx+(y2一xz)dy+(z2一xy)dz,其中г是沿螺旋线x=acosθ,y=asinθ,z=,从A(a,0,0)到B(a,0,h)的有向曲线.
已知(x一1)y’’一xy’+y=0的一个解是y1=x,又知y=ex一(x2+x+1),y*=一x2—1均是(x一1)y’’一xy’+y=(x一1)2的解,则此方程的通解是y=______·
设y=y(x)是由确定的隐函数,求y’(0)和y’’(0)的值.
极限=_____.
随机试题
髋关节后脱位可出现的并发症是
请论述周作人散文的内容和艺术成就。
A.预防褥疮、肢体置功能位及被动关节运动,呼吸训练及排痰训练和防止泌尿系感染B.肌力训练、床上全面锻炼,坐位练习、轮椅训练,站立和步行训练,作业疗法C.痉挛、性功能障碍和疼痛D.运动功能障碍和姿势异常E.早期发现,早期康复,康复与游戏及教育
吗啡急性中毒引起的呼吸抑制,首选的中枢兴奋药是
这家麻制品厂的成立( )。清算组的职权主要有( )。
保险活动所特有的内在功能是()。
某投资项目达产年份的经营成本为11232万元(含增值税进项税额),其中:其他制造费用192万元,其他管理费用480万元,其他营业费用288万元,若产成品最低周转天数为15天,该项目达产年份流动资产中的产成品为()万元。
下列各项中不属于劳动者报酬的是()。
资产评估的基本方法有()
AlthoughJackisanEnglish,hecanspeak______fluently.
最新回复
(
0
)