首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)﹦(x1﹢x2-2x3)2﹢[-3x1﹢(a-1)x2﹢7x3]2﹢(x1﹢ax3)2正定,则参数a的取值范围是( )
设二次型f(x1,x2,x3)﹦(x1﹢x2-2x3)2﹢[-3x1﹢(a-1)x2﹢7x3]2﹢(x1﹢ax3)2正定,则参数a的取值范围是( )
admin
2019-01-22
43
问题
设二次型f(x
1
,x
2
,x
3
)﹦(x
1
﹢x
2
-2x
3
)
2
﹢[-3x
1
﹢(a-1)x
2
﹢7x
3
]
2
﹢(x
1
﹢ax
3
)
2
正定,则参数a的取值范围是( )
选项
A、a﹦-2
B、a﹦-3
C、a>0
D、a为任意值
答案
D
解析
方法一:f(x
1
,x
2
,x
3
)是平方和的形式,所以f(x
1
,x
2
,x
3
)≥0。
上述方程组的系数行列式为
﹦(a﹢2)
2
﹢1>0,所以a取任意值,上述方程组都有唯一零解,即对任意的x≠0,都有f(x
1
,x
2
,x
3
)>0,f正定。故本题选D。
方法二:
f(x
1
,x
2
,x
3
)﹦[x
1
﹢x
2
-2x
3
,-3x
1
﹢(a-1)x
2
﹢7x
3
,x
1
﹢ax
3
]
﹦(x
1
,x
2
,x
3
)
﹦x
T
B
T
Bx﹦x
T
Ax,
其中A﹦B
T
B且A
T
﹦A。
|B|
﹦(a﹢2)
2
﹢1>0,
其中a为任意值,所以对任意的a,矩阵B均可逆,则A﹦B
T
TB正定,f(x
1
,x
2
,x
3
)是正定二次型。故本题选D。
本题考查正定二次型的判定。若要判断二次型正定,则应给出证明,常用的方法为二次型正定的定义或充分必要条件。二次型正定的定义:设有二次型f(x)﹦x
T
Ax,如果对于任何x≠O,都有f(x)>0,则称f为正定二次型。二次型f(x)﹦x
T
Ax正定的充分必要条件:①A的正惯性指数为n,其中n为向量x的维数;②A的特征值均大于0;③A与单位矩阵E合同;④存在可逆矩阵P,使得A﹦P
T
P;⑤的所有顺序主子式全大于0。
转载请注明原文地址:https://kaotiyun.com/show/HfM4777K
0
考研数学一
相关试题推荐
设随机试验成功的概率p=0.20,现在将试验独立地重复进行100次,则试验成功的次数介于16和32次之间的概率α=____.
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并利用泊松定理求出α的近似值(e-5=0.007).
设f(x)在[0,1]连续,且对任意x,y∈[0,1]均有|f(x)-f(y)|≤M|x-y|,M为正的常数,求证:.
求直线绕z轴旋转一周所得旋转面的方程.
求下列极限:
口袋内有四个同样的球,分别标有号码1,2,3,4.每次从中任取一个球(每次取后放回去),连续两次.如果第i次取到球上的编号记为Ai,i=1,2,记事件A表示事件“a12≥4a2”,则该试验的样本空间Ω=______;事件A=______;概率P(A)=__
求下列曲面积分,其中∑为由区面y=x2+z2与平面y=1,y=2所围立体表面的外侧.
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下:试就放回与不放回两种情形,求出(X,Y)的联合分布律.
求微分方程y’’+2y’一3y=(2x+1)ex的通解.
设二阶常系数非齐次线性微分方程y’’+y’+qy=Q(x)有特解y=3e-4x+x2+3x+2,则Q(x)=________,该微分方程的通解为_________.
随机试题
下列选项中属于面向对象设计方法主要特征的是()。
大阴唇局部受伤时,易发生出血,是因为其解剖特点为()
A.流行病学知识B.毒理学知识C.卫生统计学知识D.劳动卫生与职业病学知识E.临床医学知识职业病诊断需要
输卵管妊娠胚胎死亡的可靠依据是
根据国内外大量市场调查的实践,市场调查的程序基本可以分为:()。
关于基坑降水的说法,正确的是()。
导游员在客人都想午休时仍旧不厌其烦地大谈特谈,这一点就违背了导游语言的()。
在△ABC中,C=90°,且CA=CB=3,点M满足=()。
根据以下资料回答问题。截止2009年12月31日,北京市除农户和个体工商户以外,共有法人单位246767个。从地区分布看,全市法人单位主要集中在近郊区(朝、海、丰、石),比重达到47.0%,比2004年上升了2.7个百分点;城区(东、西、崇、宣)
eBay[A]eBayisaglobalphenomenon—theworld’slargestgaragesale,onlineshoppingcenter,cardealerandauctionsitewit
最新回复
(
0
)