首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P一1AP为对角矩阵.
设有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P一1AP为对角矩阵.
admin
2019-01-05
54
问题
设
有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P
一1
AP为对角矩阵.
选项
答案
因为A有三个线性无关的特征向量,所以λ=2的线性无关的特征向量有两个,故r(2E一A)=1. 而2E一A=[*],所以x=2,y=一2. 由|λE一A|=[*]=(λ一2)2(λ一6)=0得λ
1
λ
2
=2,λ
3
=6. 由(2E一A)X=0得λ=2对应的线性无关的特征向量为α
1
=[*] 由(6E一A)X=0得λ=6对应的线性无关的特征向量为α
3
=[*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/HqW4777K
0
考研数学三
相关试题推荐
已知随机变量X,Y的概率分布分别为P{X=一1}=并且P{X+Y=1}=1,求:(Ⅰ)(X,Y)的联合分布;(Ⅱ)X与Y是否独立?为什么?
设α,β均为三维列向量,βT是β的转置矩阵,如果αβT=,则αTβ=________。
证明:=anxn+an—1xn—1+…+a1x+a0。
某流水线上每个产品不合格的概率为p(0<p<1),各产品合格与否相对独立,当出现1个不合格产品时即停机检修。设开机后第1次停机时已生产了的产品个数为X,求X的数学期望E(X)和方差D(X)。
设二次型f(x1,x2,x3)=4x22一3x32+2ax1x2一4x1x3+8x2x3(其中a为整数)经过正交变换化为标准形f=y12+6y22+by32,求:参数a,b的值;
设二次型f(x1,x2,x3)=x12+x22+x33+2ax1x2+2x1x3+2bx2x3的秩为1,且(0,1,一1)T是二次型矩阵的特征向量,求f(x1,x2,x3)的合同规范形。
设二次型f(x1,x2,x3)=x12+x22+x33+2ax1x2+2x1x3+2bx2x3的秩为1,且(0,1,一1)T是二次型矩阵的特征向量,求参数a,b;
设A为三阶实对称矩阵,α1=(m,一m,1)T是方程组AX=0的解,α2=(m,1,1一m)T是方程组(A+E)X=0的解,则m=_________.
设f(x)是满足=一1的连续函数,且当x→0时,∫0xf(t)dt是与xn同阶的无穷小量,求正整数n.
设实矩阵A=(aij)n×n的秩为n一1,αi为A的第i个行向量(i=1,2,…,n).求一个非零向量x∈Rn,使x与α1,α2,…,αn均正交.
随机试题
湿性坏疽可发生于
患者,女性,18岁。昨日起持续性上腹剧痛,伴腹胀、呕吐。体检:体温38.8℃,血压90/50mmHg,脉搏120次/min,巩膜轻度黄染。上腹有压痛及反跳痛,尿中胆红素(++),血钙1.3mmol/L。首先考虑的治疗措施应是
( )是通过相邻管端用螺栓紧固两半外套筒,是套筒和管外壁间的橡胶密封圈压密的连接力式。
某生产企业,2012年有关会计资料如下:(1)年度会计利润总额为300万元;(2)全年销售收入为3000万元;(3)“管理费用”中列支的业务招待费30元,广告费和业务宣传费500万元;(4)“营业外支出”中列支的税收罚款1
大量采用自耦变压器的电力系统中,单相接地故障电流大于三相短路电流。()
初步核算,2009年,山东省实现生产总值(GDP)增长33805.3亿元,按可比价格计算,比上年增长11.9%。季度GDP累计增速稳步提高,经济呈现“下行—见底—企稳—回升”的运行轨迹。其中,第一产业增加值3226.6亿元,增长4.2%;第二产业增加值19
针对作弊屡禁不止的现象,某学院某班承诺,只要全班同学都在承诺书上签字,那么,如果全班有一人作弊,全班同学的考试成绩都以不及格计。校方接受并实施了该班的这一承诺。结果班上还是有人作弊,但班长的考试成绩是优秀。从上述判断逻辑得出的结沦是()。
我国宪法修正案中,增加保障人权条款的是()
下面函数调用语句含有实参的个数为func((exp1,exp2)(exp3,exp4,exp5));
Arecentarticleindicatedthatbusinessschoolsweregoingtoencouragethestudyofethicsaspartofthecurriculum.Ifgradu
最新回复
(
0
)