首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维实向量α=(a1,a2,…,an)T≠0,方阵A=ααT. 求可逆矩阵P,使P-1AP成对角矩阵.
设n维实向量α=(a1,a2,…,an)T≠0,方阵A=ααT. 求可逆矩阵P,使P-1AP成对角矩阵.
admin
2018-07-27
40
问题
设n维实向量α=(a
1
,a
2
,…,a
n
)
T
≠0,方阵A=αα
T
.
求可逆矩阵P,使P
-1
AP成对角矩阵.
选项
答案
A≠O,[*]1≤r(A)=r(αα
T
)≤r(α)=1,[*]r(A)=1,因为实对称矩阵A的非零特征值的个数就等于A的秩,故A只有一个非零特征值,而有n-1重特征值λ
1
=λ
2
=…=λ
n-1
=0,计算可得属于特征值0的线性无关特征向量可取为(设a
1
≠0):ξ
1
=(-a
2
/a
1
,1,0,…,0)
T
,ξ
2
=(-a
3
/a
1
,0,1,…,0)
T
,…,ξ
n-1
=(-a
n
/a
1
,0,0,…,1)
T
.由于A的全部特征值之和等于A的主对角线元素之和[*]a
i
2
,故得A的唯一的非零特征值为λ
n
=[*]a
i
2
=α
T
α,且由Aα=(αα
T
)α=α(α
T
α)=αλ
n
=λ
n
α可得α为对应于λ
n
的一个特征向量.令矩阵P=[ξ
1
…ξ
n-1
α],则有P
-1
AP=diag(0,0,…,0,[*]a
i
2
)为对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/IWW4777K
0
考研数学三
相关试题推荐
给出满足下列条件的微分方程:(I)方程有通解y=(C1+C2x+x-1)e-x;(Ⅱ)方程为二阶常系数非齐次线性方程,并有两个特解
设随机试验成功的概率p=0.20,现在将试验独立地重复进行100次,则试验成功的次数介于16和32次之间的概率α=_________.
证明n维列向量α1,α2,…,αn线性无关的充要条件是
已知α1=(1,2,3,4)T,α2=(2,0,-1,1)T,α3=(6,0,0,5)T,则向量组的秩r(α1,α2,α3)=_______,极大线性无关组是_______.
已知a23a31aija64a56a15是6阶行列式中的一项,试确定i,j的值及此项所带符号.
已知X,Y是相互正交的n维列向量,证明E+XYT可逆.
设A是3阶实对称矩阵,特征值是0,1,2.如果λ=0与λ=1的特征向量分别是α1=(1,2,1)T与α2=(1,-1,1)T,则λ=2的特征向量是_______.
从n阶行列式的展开式中任取一项,此项不含a11的概率为,则n=________.
已知二维非零向量X不是二阶方阵A的特征向量.(1)证明X,AX线性无关;(2)若A2X+AX一6X=0,求A的特征值,并讨论A可否对角化.
随机试题
在寸口脉中,左关所候的脏腑是
男性,67岁。以往有劳力型心绞痛,长期服用硝酸酯类药物,病情尚稳定。近1个月来胸痛又发作,部位于胸骨下段,且多发生于午睡时或晚间入睡后,服硝酸甘油无效,站立后可缓解。既往有胆结石史但从无发作。
A.中脘 B.三阴交 C.阳陵泉 D.太渊 E.膻中气会为
压实器主要由()和容器单元组成。
根据票据法规定,下列选项中,属于票据权利消灭的情形有()
在中国传统职业道德言论中,符合现代职业素质要求的是()。
我市某中学一研究性学习小组,在某一高速公路服务区,从小型汽车中按进服务区的先后顺序,每间隔5辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段:[70,75),[75,80),[80,85),[85,90),
商业的利润来源于()。
媒体曝光你所管辖的食街有人使用地沟油,你作为负责人,应该如何处理?
______decidestorunforpresidentmustfileafinancialstatementwiththeFederalElectionCommission.
最新回复
(
0
)