首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3×4矩阵,秩r(A)=1,若α1=(1,2,0,2)T,α2=(1,-1,a,5)T,α3=(2,a,-3,-5)T,α4=(-1,-1,1,a)T线性相关,且可以表示齐次方程组Aχ=0的任一解,求Aχ=0的基础解系.
已知A是3×4矩阵,秩r(A)=1,若α1=(1,2,0,2)T,α2=(1,-1,a,5)T,α3=(2,a,-3,-5)T,α4=(-1,-1,1,a)T线性相关,且可以表示齐次方程组Aχ=0的任一解,求Aχ=0的基础解系.
admin
2018-06-12
84
问题
已知A是3×4矩阵,秩r(A)=1,若α
1
=(1,2,0,2)
T
,α
2
=(1,-1,a,5)
T
,α
3
=(2,a,-3,-5)
T
,α
4
=(-1,-1,1,a)
T
线性相关,且可以表示齐次方程组Aχ=0的任一解,求Aχ=0的基础解系.
选项
答案
因为A是3×4矩阵,且秩r(A)=1,所以齐次方程组Aχ=0的基础解系有n-r(A)=3个解向量. 又因α
1
,α
2
,α
3
,α
4
线性相关,且可以表示Aχ=0的任一解,故向量组α
1
,α
2
,α
3
,α
4
的秩必为3,且其极大线性无关组就是Aχ=0的基础解系.由于 [*] 当且仅当a=-3,4或1时,秩r(α
1
,α
2
,α
3
,α
4
)=3,且不论其中哪种情况α
1
,α
2
,α
3
必线性无关.所以α
1
,α
2
,α
3
是Aχ=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/KFg4777K
0
考研数学一
相关试题推荐
设矩阵A的伴随矩阵A*=,且ABA-1=BA-1+3E,其中E为4阶单位矩阵,求矩阵B.
f(χ1,χ2,χ3)=χ12-2χ1χ2+4χ32对应的矩阵是()
已知方程组(Ⅰ)(Ⅱ)χ+5χ=0,那么(Ⅰ)与(Ⅱ)的公共解是_______.
对于齐次线性方程组,而言,它的解的情况是()
设在一个空间直角坐标系中,有3张平面的方程:P1:χ+2y+3z=3;P2:2χ一2y+2az=0;P3:χ-ay+z=b.已知它们两两相交于3条互相平行的不同直线,求a,b应该满足的条件.
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设f(x,y)在全平面有连续偏导数,曲线积分∫Lf(x,y)dx+xcosydy在全平面与路径无关,且f(x,y)dx+xcosydy=t2,求f(x,y).
计算曲面积分(x3+az2)dydz+(y3+ax2)dzdx+(z3+ay2)dxdy,其中∑为上半球面的上侧.
证明不等式1+xln(x+
随机试题
如图5所示电路中,当R1增加时,电流I2将________。
某厂产品的废品率在15%左右,在计划中要提高工作质量,使废品率降到10%,这个10%是()
硝酸酯类药物为什么能治疗心绞痛?
计划生育技术服务咨询要点中不包括
男,8岁,左上臂外伤后疼痛2小时,结合左肱骨正、斜位片,最可能的诊断为
45岁,男性,车祸3小时入院,诊断为骨盆骨折,左股骨干骨折及左胫骨开放性骨折,首先应密切观察哪种并发症
财务生存能力分析中,财务生存的必要条件是()。
甲、乙、丙、丁四人决定投资设立一普通合伙企业,并签订了书面合伙协议。合伙协议的主要内容如下:(1)甲以货币出资10万元,乙以实物折价出资8万元,丁以货币出资4万元,丙以劳务作价出资6万元;(2)约定了分配利润和承担债务的比例;(3)
1534年英国议会宣布英国教会断绝与罗马教廷一切关系的文件是()。
Thebeefisdelicious.Wouldyoulikesome______?
最新回复
(
0
)