首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶反对称矩阵. 证明:对任何非零常数c,矩阵A+cE恒可逆.
设A是n阶反对称矩阵. 证明:对任何非零常数c,矩阵A+cE恒可逆.
admin
2017-06-14
51
问题
设A是n阶反对称矩阵.
证明:对任何非零常数c,矩阵A+cE恒可逆.
选项
答案
(反证法).如果矩阵A+cE不可逆,则齐次方程组(A+cE)x=0有非零解,设其为 η,于是有 Aη=-cη,η≠0. 左乘η
T
,得 η
T
Aη=-cη
T
η≠0.与上一题矛盾. 故矩阵A+cE恒可逆.
解析
转载请注明原文地址:https://kaotiyun.com/show/KZu4777K
0
考研数学一
相关试题推荐
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方稗组的通解.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.A2;
设α=(1,1,1)T,β=(1,0,k)T,若矩阵αβT相似于,则k=__________.
若3维列向量α,β满足αTβ=2,其中αT为α为转置,则矩阵βαT的非零特征值为
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量口是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
设A和B是任意两个概率不为0的不相容事件,则下列结论中肯定正确的是()
设f(x)为[0,1]上的单调增加的连续函数,证明
(1998年试题,十二)已知线性方程组(I)的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22.…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组(Ⅱ)的通解,并说明理由.
已知矩阵和试判断矩阵A和刀是否相似,若相似则求出可逆矩阵P,使P-1AP=B,若不相似则说明理由.
随机试题
在进行投资项目的现金流量估算时,需要估算的是与项目相关的()。
下列属于有现场部件的火灾报警控制器自检检查内容的有()。
H1受体阻断药最有效的疾病是
某建设工程项目施工过程中,由于质量事故导致工程结构受到破坏,造成6000万元的直接经济损失,则该质量事故属于()。
下列关于商业银行信用风险管理的说法,错误的是()。
某企业原有职工110人,其中技术人员是非技术人员的10倍;今年招聘后,两类人员的人数之比未变,且现有职工中技术人员比非技术人员多153人。问:今年新招非技术人员多少人?
“书香门第”中的“书香”原意指()。
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.证明:α1,α2,…,αn线性无关.
下列关于Windows2003系统下WWW服务器安装、配置和使用的描述中,错误的是()。
ChooseTWOletters,A-E.WhichTWOthingsdoesJeromeadviseDaisytodointhefirstmonthoftutorials?ASeehertutorevery
最新回复
(
0
)