首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT.
设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT.
admin
2018-05-22
71
问题
设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβ
T
.
选项
答案
设r(A)=1,则A为非零矩阵且A的每行元素都成比例, 令A=[*],于是A=[*](b
1
,b
2
,…,b
n
),令α=[*] 故A=αβ
T
,显然α,β为非零向量.设A=αβ
T
,其中α,β为非零向量,则A为非零矩阵,于是r(A)≥1,又r(A)=r(αβ
T
)≤r(α)=1,故r(A)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/Kck4777K
0
考研数学二
相关试题推荐
(2000年试题,二)具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是().
(2008年试题,20)(I)证明积分中值定理:设f(x)在[a,b]上连续,则存在ζ∈[a,b],使(Ⅱ)若φ(x)有二阶导数,且满足φ(2)>φ(1)证明至少存在一点ζ∈(1,3),使得φ’’(η)
(2007年试题,21)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a)f(b)=g(b),证明:存在ξ∈(a,b),使得f(ξ)=g’’(ξ).
(2008年试题,一)设A为n阶非零矩阵,E为n阶单位矩阵.若A3=O,则().
已知非齐次线性方程组有3个线性无关的解.(1)证明方程组的系数矩阵A的秩r(A)=2;(2)求a,b的值及方程组的通解.
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是
设设存在且不为零,求常数P的值及上述极限.
设b为常数.设L与l从x=1延伸到x→+∞之间的图形的面积八为有限值,求b及A的值.
因为x→0+时,[*]所以[*]注解该题考查等价无穷小求极限的方法,当x→0常用的等价无穷小有:(1)x~sinx~tanx~arcsinx~arctanx~ex-1~ln(1+x);(2)1-cosx~,1-cosax~(3)(1+x)a-1~a
随机试题
[*]
下列不是儿茶酚胺症患者术前准备内容的是()
哮证缓解期治疗要点是治( )。哮证发作期治疗要点是治( )。
地方性单纯性甲状腺肿最主要的发病原因是
某工程船舶在海上作业时,为了避让大货轮进港,在航道边触礁,情况十分危急,船长向相关海事部门、项目经理分别报告并请求救助。该工程船主机功率3200kW,事故中人员无死亡、无重伤,船体和机械直接经济损失340万元。问题:项目经理应如何应对这一突发
[案例一][背景]某中型水库除险加固工程主要建设内容:砌石护坡拆除、砌石护坡重建、土方填筑(坝体加高培厚)、深层搅拌桩渗墙、坝顶沥青道路、混凝土防浪墙和管理房等。计划工期9个月(每月按30天计)。合同约定:①合同中关键工作的结算工程量超过原招标工程量1
20世纪50年代,英国首相丘吉尔_______于美苏技术的飞跃发展,乃开始对技术正视,1956年的白皮书是技术教育的绿灯,继而技术学院纷纷成立。今天,科技已经普遍成为大学知识结构的一个组成部分。就大学教学与研究来说,不但再没有轻忽“实用性”知识的现象,实用
促进儿童产生高自尊的因素包括()。
手机的无线充电技术日趋成熟,方便了我们的生活。下列关于无线充电技术的说法不正确的是()。
Ifmyfatherwillnotagreetosignthepapers,______.
最新回复
(
0
)