设矩阵A=相似,求x,y;并求一个正交矩阵P,使P-1AP=A。

admin2019-05-14  11

问题 设矩阵A=相似,求x,y;并求一个正交矩阵P,使P-1AP=A。

选项

答案A与Λ相似,相似矩阵有相同的特征值,故λ=5,λ=-4,λ=y是A的特征值。 因为λ=-4是A的特征值,所以 [*] 解得x=4。 又因为相似矩阵的行列式相同, [*] 所以y=5。 当λ=5时,解方程(A-5E)x=0,得两个线性无关的特征向量[*],将它们正交化、单位化得: [*] 当λ=-4时,解方程(A+4E)x=0,得特征向量[*],单位化得: [*] 则P-1AP=Λ。

解析
转载请注明原文地址:https://kaotiyun.com/show/M404777K
0

相关试题推荐
最新回复(0)