首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点. (Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx’(x0,y0)=0,Fy’(x0,y0)>0,Fxx’’(x0,y0)<0.由方
(Ⅰ)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点. (Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx’(x0,y0)=0,Fy’(x0,y0)>0,Fxx’’(x0,y0)<0.由方
admin
2017-11-23
24
问题
(Ⅰ)已知由参数方程
确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点.
(Ⅱ)设F(x,y)在(x
0
,y
0
)某邻域有连续的二阶偏导数,且F(x
0
,y
0
)=F
x
’(x
0
,y
0
)=0,F
y
’(x
0
,y
0
)>0,F
xx
’’(x
0
,y
0
)<0.由方程F(x,y)=0在x
0
的某邻域确定的隐函数y=y(x),它有连续的二阶导数,且y(x
0
)=y
0
,求证y(x)以x=x
0
为极小值点.
选项
答案
(Ⅰ)先求y(0):由x=arctant知,x=0<=>t=0,x>0(<0)<=>t>0(<0).由y=ln(1一t
2
一siny知,x=0<=>y=一siny<=> [*] 并判断它在x=0邻域的正负号. [*] 其中δ>0是充分小的数.因此x=0是y=f(x)的极大值点. (Ⅱ)由隐函数求导法知y’(x)满足 [*] 令x=x
0
,相应地y=y
0
,由F
x
’(x
0
,y
0
)=0,F
y
’(x
0
,y
0
)≠0得y’(x
0
)=0.将上式再对x求导, 并注意y=y(x)即得 [*] 再令x=x
0
,相应地y=y
0
,y’(x
0
)=0,得 [*] 因此x=x
0
是y=y(x)的极小值点.
解析
转载请注明原文地址:https://kaotiyun.com/show/N8r4777K
0
考研数学一
相关试题推荐
设f(z),g(y)都是可微函数,则曲线在点(x0,y0,z0)处的法平面方程为_____.
设是f(x)的一个原函数,则=__________。
直线L的方向向量为[*]而平面π的法向量n=(1,1,0),故s=2n,所以s∥n,即直线L与平面π垂直.
设f(x,y)为具有二阶连续偏导数的二次齐次函数,即对任何x,y,t下式成立f(tx,ty)=t2f(x,y).设D是由L:x2+y2=4正向一周所围成的闭区域,证明:
设随机变量X满足|X|≤1,且,在{一1<X<1)发生的情况下,X在(一1,1)内任一子区间上的条件概率与该子区间长度成正比.求P(X<0).
设函数f(x)二阶连续可导,f(0)=1且有求f(x).
求(4一x+y)dx一(2一x—y)dy=0的通解.
设正项数列{an}单调减少,且是否收敛?并说明理由.
二次型f(x1,x2,x3)=5一2x1x2—6x2x3+6x1x3的秩为2,求c及此二次型的规范形,并写出相应的坐标变换.
设函数f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=0,f(1)=1,证明:对于任意正数a,b,总存在x1,x2∈(0,1),使得=a+b成立。
随机试题
社会交换论
暂居菌常寄存的部位是
患儿男,2岁9个月,少尿,水肿2周。查体:T37.2℃,R35次/分,血压正常,眼睑、面部、四肢、阴囊水肿明显,腹部移动性浊音(+),双肾区无叩痛。尿常规示蛋白(+++),RBC0~2/HP,肾功能正常。患儿入院后,出现明显发热、咳嗽,查体双肺可闻
下列属于抗白三烯的药物是()。
在厂房施工时,基础下出现流沙层,这种情况下的工程变更属于()。
在实际生活中,商品价格的主要表现形式有()。
有效的声誉风险管理体系应当重点强调的内容不包括()。
在其他条件相同的情况下,下列说法正确的有()。
Furthertreatmentwillhelptopreventhimfrom(develop)________cancer.
A、TheUK.B、Canada.C、France.D、Germany.C
最新回复
(
0
)