首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点. (Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx’(x0,y0)=0,Fy’(x0,y0)>0,Fxx’’(x0,y0)<0.由方
(Ⅰ)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点. (Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx’(x0,y0)=0,Fy’(x0,y0)>0,Fxx’’(x0,y0)<0.由方
admin
2017-11-23
46
问题
(Ⅰ)已知由参数方程
确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点.
(Ⅱ)设F(x,y)在(x
0
,y
0
)某邻域有连续的二阶偏导数,且F(x
0
,y
0
)=F
x
’(x
0
,y
0
)=0,F
y
’(x
0
,y
0
)>0,F
xx
’’(x
0
,y
0
)<0.由方程F(x,y)=0在x
0
的某邻域确定的隐函数y=y(x),它有连续的二阶导数,且y(x
0
)=y
0
,求证y(x)以x=x
0
为极小值点.
选项
答案
(Ⅰ)先求y(0):由x=arctant知,x=0<=>t=0,x>0(<0)<=>t>0(<0).由y=ln(1一t
2
一siny知,x=0<=>y=一siny<=> [*] 并判断它在x=0邻域的正负号. [*] 其中δ>0是充分小的数.因此x=0是y=f(x)的极大值点. (Ⅱ)由隐函数求导法知y’(x)满足 [*] 令x=x
0
,相应地y=y
0
,由F
x
’(x
0
,y
0
)=0,F
y
’(x
0
,y
0
)≠0得y’(x
0
)=0.将上式再对x求导, 并注意y=y(x)即得 [*] 再令x=x
0
,相应地y=y
0
,y’(x
0
)=0,得 [*] 因此x=x
0
是y=y(x)的极小值点.
解析
转载请注明原文地址:https://kaotiyun.com/show/N8r4777K
0
考研数学一
相关试题推荐
A、发散B、绝对收敛C、条件收敛D、敛散性与k有关C
设f(x)在[0,+∞)上连续,非负,且以T为周期,证明:在(a,b)内,g(x)≠0;
若f(x)为[a,b]上的有界凹函数,则下列结论成立:①λ∈[0,1],f(λx1+(1一λ)x2)≤λf(x1)+(1一λ)f(x2),x1,x2∈[a,b];②③④.f(x)为(a,b)上的连续函数.
设A为n阶非奇异矩阵,a是n维列向量,b为常数,计算PQ;
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(一1,0,1)T.求A的其他特征值与特征向量;
(1)若A可逆且A~B,证明:A*~B*;(2)若A~B,证明:存在可逆矩阵P,使得AP~BP.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.判断矩阵A可否对角化.
设y=y(x)满足y’=x+y,且满足y(0)=1,讨论级数的敛散性.
设正项数列{an}单调减少,且是否收敛?并说明理由.
二次型f(x1,x2,x3)=5一2x1x2—6x2x3+6x1x3的秩为2,求c及此二次型的规范形,并写出相应的坐标变换.
随机试题
关系模型的特点不包括()
脊髓位于________内,上端在枕骨大孔处连接脑的________;下端成年人约平第________腰椎体下缘。
幼儿对住院反应的主要护理措施,错误的是()
A.凹逆散B.逍遥散C.大柴胡汤D.葛根芩连汤E.小柴胡汤和解少阳,内泻热结的代表方剂是
肉瘤的特点是
A.转移癌B.恶性癌C.交界癌D.癌前病变E.早期癌黑色素瘤属于
效力未定的民事行为的类型包括( )。
下列关于广告主广告部门的职能,说法错误的是()。
2014年7月1日开始实施的《事业单位人事管理条例》指出,对事业单位人员的处分包括:
Thenatureoflightisnotwhollyknown,butitisgenerallybelievedtobematter,asinits(1)______,itobeysthelaws(2)____
最新回复
(
0
)