首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点. (Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx’(x0,y0)=0,Fy’(x0,y0)>0,Fxx’’(x0,y0)<0.由方
(Ⅰ)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点. (Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx’(x0,y0)=0,Fy’(x0,y0)>0,Fxx’’(x0,y0)<0.由方
admin
2017-11-23
48
问题
(Ⅰ)已知由参数方程
确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点.
(Ⅱ)设F(x,y)在(x
0
,y
0
)某邻域有连续的二阶偏导数,且F(x
0
,y
0
)=F
x
’(x
0
,y
0
)=0,F
y
’(x
0
,y
0
)>0,F
xx
’’(x
0
,y
0
)<0.由方程F(x,y)=0在x
0
的某邻域确定的隐函数y=y(x),它有连续的二阶导数,且y(x
0
)=y
0
,求证y(x)以x=x
0
为极小值点.
选项
答案
(Ⅰ)先求y(0):由x=arctant知,x=0<=>t=0,x>0(<0)<=>t>0(<0).由y=ln(1一t
2
一siny知,x=0<=>y=一siny<=> [*] 并判断它在x=0邻域的正负号. [*] 其中δ>0是充分小的数.因此x=0是y=f(x)的极大值点. (Ⅱ)由隐函数求导法知y’(x)满足 [*] 令x=x
0
,相应地y=y
0
,由F
x
’(x
0
,y
0
)=0,F
y
’(x
0
,y
0
)≠0得y’(x
0
)=0.将上式再对x求导, 并注意y=y(x)即得 [*] 再令x=x
0
,相应地y=y
0
,y’(x
0
)=0,得 [*] 因此x=x
0
是y=y(x)的极小值点.
解析
转载请注明原文地址:https://kaotiyun.com/show/N8r4777K
0
考研数学一
相关试题推荐
[*]
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设当x→x0时,α(x),β(x)都是无穷小(β(x)≠0),则当x→x0时,下列表达式中不一定为无穷小的是()
设随机变量(X,Y)的联合密度函数为设Z=X+Y,求Z的概率密度函数.
设{un},{cn}为正项数列,证明:
以y=C1ex+ex(C2cosx+C3sinx)为特解的三阶常系数齐次线性微分方程为___________.
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1-α2,α1-2α2+α3,(α1一α3),α1+3α2-4α3,是导出组Ax=0的解向量的个数为()
求下面线性方程组的解空间的维数:并问ξ1=[9,一1,2,一1,1]T是否属于该解空间.
随机地取两个正数x和y,这两个数中的每一个都不超过1,试求x与y之和不超过1,积不小于0.09的概率.
随机试题
曲线的水平渐近线为_________.
幽门梗阻可发生哪项代谢改变?()
我国“十一五”规划中的量化指标主要分为预期性指标和约束性指标两类,以下那些属于是预期性指标()。
出纳填写票据的出票日期时,“9月12日”应填写成()。
简述用户在信息系统开发中的权利和义务。
关于连带保证,下列说法不正确的是()。
下列对联与其所描写的人物对应正确的是()。
法的教育作用是指通过法律的实施,使法律对()产生影响。
下列叙述中正确的是
Doyoufindgettingupinthemorningsodifficultthatit’spainful?Thismightbecalledlaziness,butDr.Kleitmanhasanew【
最新回复
(
0
)