首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1=2x+ex+e2x,y2=2x+ex,y3=-ex+e2x+2x都是某二阶常系数线性齐次方程的解,则此方程为( ).
设y1=2x+ex+e2x,y2=2x+ex,y3=-ex+e2x+2x都是某二阶常系数线性齐次方程的解,则此方程为( ).
admin
2019-08-09
32
问题
设y
1
=2x+e
x
+e
2x
,y
2
=2x+e
x
,y
3
=-e
x
+e
2x
+2x都是某二阶常系数线性齐次方程的解,则此方程为( ).
选项
A、y″+3y′+2y=2x
B、y″一3y′+2y=4x一6
C、y″一3y′+2y=x
D、y″+3y′+2y=x
答案
B
解析
因y
1
,y
2
,y
3
均为非齐次方程的解,则y
1
-y
2
=e
2x
,y
1
一y
3
=2e
x
是相应的齐次方程的解.因此r
1
=2,r
2
=1为特征方程的根.特征方程为
(r一2)(r一1)=0, 即 r
2
—3r+2=0,
所以齐次方程为 y″一3y′+2y=0.
设所求方程为y″一3y′+2y=f(x),f(x)为非齐次项,将y
2
=2x+e
x
代入得
f(x)=4x一6,
则y″一3y′+2y=4x一6.仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/NMc4777K
0
考研数学一
相关试题推荐
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1-θ)2,EX=2(1-θ)(0为未知参数).(Ⅰ)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X服从参数为λ(λ>0)的指数分布.(Ⅰ)试求总体X的数学期望E(X)的矩估计量和最大似然估计量;(Ⅱ)检验所得估计是否为无偏估计.
已知随机变量X在(1,2)上服从均匀分布,在X=χ条件下Y服从参数为χ的指数分布,则E(XY)=_______.
已知n阶矩阵A满足(A-aE)(A-bE)=0,其中a≠b,证明A可对角化.
已知随机变量X与Y相互独立且都服从参数为的0-1分布,即P{X=0}=P{X=1}=,P{Y=0}=P{Y=1}=,定义随机变量Z=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立.
已知随机变量X,Y的概率分布分别为P{X=-1}=,P{X=0}=,P{X=1}=;P{Y=0}=,P{Y=1}=,P{Y=2}=,并且P{X+Y=1}=1,求:(Ⅰ)(X,Y)的联合分布;(Ⅱ)X与Y是否独立?为什么?
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
已知线性方程组有解(1,-1,1,-1)T.(1)用导出组的基础解系表示通解;(2)写出χ2=χ3的全部解.
方程y’"+2y"=x2+xe-2x的特解形式为()。
方程y’’一2y’+3y=exsin的特解的形式为
随机试题
震颤麻痹的主要病变部位在_______,舞蹈病的病变部位主要在_______。
TDDS
A.成釉器B.牙乳头C.牙囊D.牙蕾E.上皮根鞘
石菖蒲、远志的共同作用是
可以判断结晶纯度的方法有
下列项目中,属于冲销销售收入的是()。
A.outsidethecompanyB.bringfreshideasC.toemployD.appointingA.theyrarely【T13】______toapositionB.moredi
张教授指出,生物燃料是指利用生物资源生产的燃料乙醇或生物柴油,它们可以替代由石油制取的汽油和柴油,是可再生能源开发利用的重要方向。受世界石油资源短缺、环保和全球气候变化的影响,20世纪70年代以来,许多国家日益重视生物燃料的发展,并取得显著成效。所以,应该
设矩阵A=且A3=0.若矩阵X满足X-XA2-AX+AXA2=E,其中E为三阶单位矩阵,求X.
【B1】【B10】
最新回复
(
0
)