首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
admin
2018-12-29
46
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:
①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);
②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则r(A)=r(B);
④若r(A)=r(B),则Ax=0与Bx=0同解。
以上命题中正确的有( )
选项
A、①②。
B、①③。
C、②④。
D、③④。
答案
B
解析
由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②,④显然不正确,利用排除法,可得正确选项为B。
下面证明①,③正确:
对于①,由Ax=0的解均是Bx=0的解可知,方程组Bx=0含于Ax=0之中。从而Ax=0的有效方程的个数(即r(A))必不少于Bx=0的有效方程的个数(即r(B)),故r(A)≥r(B)。
对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其解空间的维数(即基础解系包含解向量的个数)相同,即n—r(A)=n—r(B),从而r(A)=r(B)。
转载请注明原文地址:https://kaotiyun.com/show/NXM4777K
0
考研数学一
相关试题推荐
随机地向半圆(a>0)内投掷一点,点落在半圆内的任何区域的概率与区域的面积成正比,则原点和该点连线与x轴正方向夹角小于的概率为_______.
从1,2,3,4中任取一个数,记为X,再从1,…,X中任取一个数,记为Y,则P{Y=2}=________.
设x=y-εsiny(0<ε<为常数),它的反函数是y=y(x),则等于()
设(X,Y)的概率密度为f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,存在且不为0,则X与Y的概率密度fX(x),fY(y)分别为()
已知四阶矩阵A,B满足ABA-1=AB+6E,若A=,则B=_________.
下列命题中正确的是()
在一系列的独立试验中,每次试验成功的概率为p,记事件A=“第3次成功之前失败4次”,B=“第10次成功之前至多失败2次”,则P(A)=_______;P(B)=______.现进行n次重复试验,则在没有全部“失败”的条件下,“成功”不止一次的概率q=___
已知β1,β2是非齐次线性方程组AX=b的两个不同的解,α1,α2是其对应的齐次线性方程组的基础解系,k1,k2是任意常数,则方程组AX=b的通解必是()
设向量α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量β2不能由α1,α2,α3线性表示,则对任意常数k必有()
设f(x)=nx(1-x)n(n=1,2,…),Mn是f(x)在[0,1]上的最大值,求极限
随机试题
要显示格式为“页码/总页数”的页码,应当设置文本框控件的空间来源属性为()。
()是企业赢得竞争优势和持续发展的根基。
“十年树木,百年树人”,这句话体现了教师劳动的哪一特点()
某医院口腔预防科对当地儿童检查口腔并予以治疗医生对该地区部分儿童做了龋活性实验,以下说法错误的是
A.忧郁过度B.多产房劳C.素体虚弱D.经期不洁,感受外邪E.久病伤阴最易造成湿热下注经断复来的病因是
管状淋巴管炎常发生的部位是
界定一个工作行为是否为项目行为只能看它是否具有()。
基金财务报表的复核指基金托管人对基金管理人出具的()等报表内容进行核对的过程。Ⅰ.资产负债表Ⅱ.基金经营业绩表Ⅲ.基金收益分配表Ⅳ.基金净值变动表
《通志》
WhichofthefollowingcanNOTreducetherelianceuponexcavation?Whichofthefollowingmayarchaeologistscurrentlyplacel
最新回复
(
0
)