首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知实二次型f=(a11x1+a12x2+a13x3)2+(a21x1+a22x2+a23x3)2+(a31x1+a32x2+a33x3)2正定,矩阵A=(aij)3×3,则( )
已知实二次型f=(a11x1+a12x2+a13x3)2+(a21x1+a22x2+a23x3)2+(a31x1+a32x2+a33x3)2正定,矩阵A=(aij)3×3,则( )
admin
2019-01-23
86
问题
已知实二次型f=(a
11
x
1
+a
12
x
2
+a
13
x
3
)
2
+(a
21
x
1
+a
22
x
2
+a
23
x
3
)
2
+(a
31
x
1
+a
32
x
2
+a
33
x
3
)
2
正定,矩阵A=(a
ij
)
3×3
,则( )
选项
A、A是正定矩阵。
B、A是可逆矩阵。
C、A是不可逆矩阵。
D、以上结论都不对。
答案
B
解析
f=(a
11
x
1
+a
12
x
2
+a
13
x
3
)
2
+(a
21
x
1
+a
23
x
2
+a
23
x
3
)
2
+(a
31
x
1
+a
32
x
2
+a
33
x
3
)
2
=x
T
A
T
Ax=(Ax)
T
(Ax)。
因为实二次型f正定,所以对任意x≠0,f>0的充要条件是Ax≠0,即齐次线性方程组Ax=0只有零解,A是可逆矩阵,故选B。
转载请注明原文地址:https://kaotiyun.com/show/NmP4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,ξ1,ξ2,…,ξt是齐次方程组Ax=0的基础解系,若存在ηi(i=1,2,…,t),使Aηi=ξi,证明:向量组ξ1,ξ2,…,ξt,η1,η2,…,ηt线性无关.
已知矩阵A=与对角矩阵相似,求An.
设A和B均是m×n矩阵,秩r(A)+r(B)=n,若BBT—E且B的行向量是齐次方程组Ax=0的解,P是m阶可逆矩阵,证明:矩阵PB的行向量是Ax=0的基础解系.
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(一1,一1,1,a)T,α3=(2,a,一3,一5)T,α4=(1,一1,a,5)T与齐次方程组Ax=0的基础解系等价,求Ax=0的
设二次型f(x1,x2,x3)=XTAX=ax12+2x22—2x32+2x1x3(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为一12.(1)求a,b的值.(2)利用正交变换将二次型f化为标准形,并写出所用
设A=.(1)若矩阵A正定,求a的取值范围.(2)若a是使A正定的正整数,求正交变换化二次型xTAx为标准形,并写出所用坐标变换.
二次型4x22一3x32+2ax1x2—4x1x3+8x2x3经正交变换化为标准形y12+6y22+by32,则a=__________.
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2。的秩为_________.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为①求A.②证明A+E是正定矩阵.
随机试题
Britain’sprivateschoolsareoneofitsmostsuccessfulexports.Thechildrenofthewealthy【C1】________tothem,whetherfromC
结核样肉芽肿不见于下列哪种疾病
债券发行人往往在利率走低时行使赎回权,从而加大了债券投资者的再投资风险。()
齐白石的中国画《蛙声十里出山泉》描写的是()。
矮象和硕鼠提起庞然大物,我们往往会想到象。象是现存最大的陆地动物,最大的非洲丛林象的身高能超过4米,体重能达到12吨。象刚生下来时的体重通常就有120千克。它们是如此庞大,以至于我们习惯充满敬畏地称之为“大象"。但是有一种象的形象很难让
学习策略是指
根据侵权责任法规定,污染环境造成损害的,污染者承担侵权责任的归责原则是()(2014年非法学基础课单选第25题)
"WhatAbouttheMen?"wasthetitleofaCongressionalbriefinglastweektimedto【B1】______NationalWorkandFamilyMonth."Wha
命令?LEN(SPACE(3)-SPACE(2))的结果是( )。
小孩子一般都对游戏很感兴趣,并且渴望父母与自己一起玩儿游戏。不过,陪孩子玩儿也得讲技巧,否则,很难达到理想的效果。第一,表达对游戏的兴趣。父母在陪孩子玩儿游戏时,要和孩子一样投入、专心,短时间完整的注意力投入,比长时间的敷衍来得更有力量。
最新回复
(
0
)