首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值为λ1= —1,λ2=λ3=1,对应于λ1的特征向量为ξ1=(0,1,1)T,求A。
设三阶实对称矩阵A的特征值为λ1= —1,λ2=λ3=1,对应于λ1的特征向量为ξ1=(0,1,1)T,求A。
admin
2018-12-29
40
问题
设三阶实对称矩阵A的特征值为λ
1
= —1,λ
2
=λ
3
=1,对应于λ
1
的特征向量为ξ
1
=(0,1,1)
T
,求A。
选项
答案
设对应于λ
2
=λ
3
=1的特征向量为ξ=(x
1
,x
2
,x
3
)
T
。由实对称矩阵属于不同特征值的特征向量必正交得ξ
T
ξ
1
=0,即x
2
+x
3
=0,解得ξ
2
=(1,0,0)
T
,ξ
3
=(0,1,—1)
T
。 又由A(ξ
1
,ξ
2
,ξ
3
)=(λ
1
ξ
1
,λ
2
ξ
2
,λ
3
ξ
3
),故有 A=(λ
1
ξ
1
,λ
2
ξ
2
,λ
3
ξ
3
)(ξ
1
,ξ
2
,ξ
3
)
—1
=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/NxM4777K
0
考研数学一
相关试题推荐
设a,b均为非零向量,且满足(a+3b)⊥(7a-5b),(a-4b)⊥(7a-2b),则a与b的夹角等于().
A是3阶实对称矩阵,其主对角线上元素都是0,并且α=(1,2,-1)T满足Aα=2α.求正交矩阵P使P-1AP可相似对角化.
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn-r=ξn-r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ1η1+μ2η2+…+μ
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求|A|.
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
设a0,a1,…,an-1是n个实数,方阵若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使P-1AP=A.
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(1,-1,a,5)T,α3=(2,a,-3,-5)T,α4=(-1,-1,1,a)T线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
已知矩阵与对角矩阵相似,求An.
设三阶实对称矩阵A的特征值分别为0,1,1,是A的两个不同的特征向量,且A(α1+α2)=α2.求正交矩阵Q,使得QTAQ为对角矩阵.
随机试题
下列机构中,适用行政单位会计制度的有()
魔幻现实主义代表作《百年孤独》的作者是______。()
组成药物中含有人参、甘草、大枣的方剂是
期货交易所会员结算准备金最低余额由会员以自有资金向期货交易所缴纳。()
出售型房地产开发投资的不确定因素有()。
与普通合伙制企业相比,下列各项中,属于公司制企业特点的是()。
下列情形中,纳税人可自行开具增值税专用发票的有()。
证据必须查证确认,才能作为认定事实的根据。()
OnDialectalTVProgramsThereismuchdiscussiontodayaboutwhethereconomicgrowthisdesirable.Atanearlierperiod,ou
Apassportistheonlyuniversallyacceptedformofidentificationaroundtheworld.Ifyouareover13andareapplyingfora
最新回复
(
0
)