首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
admin
2015-07-22
80
问题
设A为n阶矩阵,A
11
≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A
*
b=0.
选项
答案
设非齐次线性方程组AX=b有无穷多个解,则r(A)<n,从而|A|=0, 于是A
*
b=A
*
AX=|A|X=0. 反之,设A
*
b=0,因为b≠0,所以方程组A
*
X=0有非零解,从而r(A
*
)<n,又A
11
≠0,所以r(A
*
)=1,且r(A)=n一1. 因为r(A
*
)=1,所以方程组A
*
X=0的基础解系含有n一1个线性无关的解向量,而A
*
A=0,所以A的列向量组α
1
,α
2
,…,α
n
为方程组A
*
X=0的一组解向量. 由A
11
≠0,得α
2
,…,α
n
线性无关,所以α
2
,…,α
n
是方程组A
*
X—O的基础解系. 因为A
*
b=0,所以b可由α
2
,…,α
n
线性表示,也可由α
1
,α
2
,…,α
n
线性表示,故r(A)=r(A)=n一1<n,即方程组AX=b有无穷多个解.
解析
转载请注明原文地址:https://kaotiyun.com/show/OIw4777K
0
考研数学一
相关试题推荐
设f(x)=sin2x+∫0πxf(x)dx,求f(x).
设则∫-15f(x-1)dx=________.
设y=y(x),z=z(x)由确定,求dz/dx.
设f(x)在[1,2]上连续,在(1,2)内二阶连续可导,且f"(x)>0,f(0)=0,证明:2f(1)<f(2).
设函数f(x)在[0,1]上连续,且f(x)>0,则=________.
曲线y=(x-1)(x-2)和x轴围成平面图形,求此平面图形绕y轴旋转一周所成的旋转体的体积.
f(χ)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f′(0)=0.证明:存在ξ∈(-1,1),使得f″′(ξ)=3.
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.(1)证明:=n:(2)设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
下列级数中发散的是().
随机试题
根据基期的不同,增长量可分为()。
男性,40岁,阵发性腹部绞痛,伴恶心、呕吐,停止排气、排便1天。查体:急性病容,呼吸深而快,皮肤干燥,弹性差,腹部中部膨隆,可见肠形,伴轻度压痛,可闻气过水声。血生化:pH7.32,K+3.1mmol/L,Na+140mmol/L,Cl-98mmol/L,
感冒的治疗.可分别采用辛温解表或辛凉解表.此属于
某村村民因在外打工,本村集体所有的土地无人耕种,该村决定将部分土地承包给邻村的人耕种,对此说法正确的是:
对各向异性的膨胀岩土,应测定其不同方向的()。
进出口货物完税后,如因收发货人或其代理人违反规定而造成少征或漏征税款的,海关在1年内可以追缴。()
微山湖位于枣庄市境内,是当年铁道游击队经常活动的地方。()
(2016·江西)为切实保障教师的合法权益,我国《教师法》赋予了教师申诉的权利。当教师提出申诉时,必须符合韵条件不包括()
在日常生活中,我们经常会听到这么一句话——“身在福中不知福”,这句话生动地告诉我们()。
Themostfamiliarheadachecomesfrom______tightnessintheback,headandneck,whichmightbecausedinturnbyexertion,orw
最新回复
(
0
)