首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明: 存在η∈(一1,1),使得f"(η)+f'(η)=1。
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明: 存在η∈(一1,1),使得f"(η)+f'(η)=1。
admin
2019-01-19
33
问题
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:
存在η∈(一1,1),使得f"(η)+f'(η)=1。
选项
答案
令G(x)=e
x
[f'(x)一1],由(I)知,存在ξ∈(0,1),使G(ξ)=0,又因为f(x)为奇函数,故f'(x)为偶函数,知G(一ξ)=0,则存在η∈(一ξ,ξ)[*](一1,1),使得G'(η)=0,即 e
η
(f'(η)一1)+e
η
f"(η)=0,f"(η)+f'(η)=1。
解析
转载请注明原文地址:https://kaotiyun.com/show/P1P4777K
0
考研数学三
相关试题推荐
已知某商品的需求量x对价格p的弹性为η=一3p3,而市场对该商品的最大需求量为1(万件),则需求函数为__________.
设曲线L2:y=1一x2(0≤x≤1),x轴和y轴所围区域被曲线L2:y=kx2分成面积相等的两部分,其中常数k>0.(I)试求k的值;(Ⅱ)求(I)中k的值对应的曲线L2与曲线L1及x轴所围平面图形绕x轴旋转一周所得的旋转体的体积.
已知3维列向量β不能由α1=能否相似对角化?若能则求出可逆矩阵P使P—1AP=A.若不能则说明理由。
求解微分方程—y=x2+y2.
设随机变量X的分布函数为F(x)=.
设X1,X2,…,Xn是n个相互独立的随机变量,且E(Xi)=μ,D(Xi)=4,i=1,2,…,n,对于<μ+2}≥__________.
设f(x1,x2)=,则二次型的对应矩阵是________。
设α1=,α2=,α3=,则α1,α2,α3经过施密特正交规范化后的向量组为________.
已知三元二次型xTAx经正交变换化为2y12—y22—y32,又知A*α=α,其中α=(1,1,一1)T,求此二次型的表达式.
随机试题
(2012年04月)宣传作为一种促销工具,具有哪些重要作用?
已产4胎的高产奶牛,分娩后1天突然发生全身肌肉初期震颤,但很快出现全身肌肉松弛无力、四肢瘫痪、四肢位于腹下,头向后弯与胸侧,神智昏迷,各种感觉反射降低或丧失、体温降低,心跳快弱,病急、病程短,不治疗或治疗不当死亡率高。治疗的特效方法()。
患者车祸后2小时送至医院,诉咳嗽,胸部疼痛。查T36.5℃,P130次/分,R30次/分,BP90/60mmHg,神志清晰,右胸部压痛明显,右肺呼吸音低,右下肢有骨折征。胸片示:右侧液气胸。创伤的种类是
风湿病增生期最具特征性的病理变化是()
当评估的重大错报风险为低水平时.注册会计师是否就可以不对重大的交易、账户余额和披露设计和实施实质性程序?
李琳在A公司已经工作了13年,从行政秘书开始,历经行政专员、行政主管、行政部副经理。在几个月前的内部招聘中,李琳竞聘行政部经理,但由于能力欠缺,未能胜出。(1)针对李琳目前处境,人力资源部的职业生涯管理任务是什么?(2)李琳希望下一步能竞聘
如图是一个有n层(n≥2)的六边形点阵。它的中心是一个点,算作第一层,第2层每边有2个点,第3层每边有3个点,……,第n层每边有n个点,则这个点阵的点数共有___________个。
社会工作者陈莲从事房屋拆迁方面的工作,在工作中,她运用了社会策划模式设计社区发展计划。陈莲收集了环境发展趋势资料,了解对计划有影响力的人士和团体,分析他们的利益和需要、他们与计划的关系及对计划的期望和要求,她这样做的目的是()。
童话故事《木偶奇遇记》中,木偶人匹诺曹一撒谎。鼻子就会变长,谎话显而易见。现实生活中,虽然说谎话时我们的鼻子不会变长,但我们身体确实也会产生一些细微的生理变化,有的通过肉眼就可以观察到,有的则要通过精密的测谎仪器才测试出来。日前,美国犹他州大学的科学家研发
有如下程序:intx=3;do{x一=2;cout<<x,}while(!(一x));执行这个程序的输出结果是()。
最新回复
(
0
)