首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵 其中矩阵A可逆,则B-1=( )
设矩阵 其中矩阵A可逆,则B-1=( )
admin
2021-02-25
61
问题
设矩阵
其中矩阵A可逆,则B
-1
=( )
选项
A、A
-1
P
1
P
2
B、P
1
A
-1
P
2
C、P
1
P
2
A
-1
D、P
2
A
-1
P
1
答案
C
解析
本题考查矩阵的初等变换与初等矩阵的关系.所涉及的知识点是
(1)对A矩阵施一次初等列变换,相当于用同类的初等方阵右乘矩阵A.
(2)初等矩阵都是可逆的矩阵,其逆仍是同种的初等矩阵.
(3)可逆矩阵的性质,可逆矩阵积的逆等于逆的积,要调换因子的顺序.
由题设,矩阵是通过交换矩阵的第2、3两列和交换第1、4两列后得到的,即
B=AP
1
P
2
或B=AP
2
P
1
,
于是B
-1
=P
-1
1
P
-1
2
A
-1
,又P
-1
1
=P
1
,P
-1
2
=P
2
,故B
-1
=P
1
P
2
A
-1
或B
-1
=P
2
P
1
A
-1
.因此应选C.
转载请注明原文地址:https://kaotiyun.com/show/PZ84777K
0
考研数学二
相关试题推荐
一个瓷质容器,内壁和外壁的形状分别为抛物线y=。把它铅直地浮在水中,再注入比重为3的溶液。问欲保持容器不沉没,注入液体的最大深度是多少?(长度单位为厘米)
设A,B为三阶矩阵且A不可逆,又AB+2B=O且r(B)=2,则|A+4E|=().
设A是3阶矩阵,特征值为1,一1,一2,则下列矩阵中可逆的是
设3维向量组α1,α2线性无关,β1,β2线性无关.(Ⅰ)证明:存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;(Ⅱ)若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求
设f(x)在[a,b]上连续,在(a,b)内可导,且试证:对任意实数k,在(a,b)内存在一点ξ,使得
[2002年]已知A,B为三阶矩阵,且满足2A-1B=B一4E,其中E是三阶单位矩阵.(1)证明矩阵A一2E可逆;(2)若B=,求矩阵A.
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
(2008年)设n元线性方程组Aχ=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求χ1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为____________.
设三阶方阵A,B满足关系式A-1BA=6A+BA,且则B=__________。
随机试题
蛋白质含量最高的脂蛋白是
医患关系的性质是
用杂化轨道理论推测下列分子的空间构型,其中为平面三角形的是()。
居住建筑疏散楼梯的最小净宽度是()m。
已知我国2006年国内生产总值为210871.0亿元,则根据上表计算的2006年国民生产总值(或国民总收入)为()。表中资本和金融项目的数据表明,2006年资本交易和利用外资的情况是()。
个人经营贷款借款人不能妥善保管、合理使用银行贷款抵押物的,银行可以要求借款人停止其行为,恢复抵押物价值,借款人不予履行的,应()。[2015年10月真题]
以下程序的输出结果是()。#include<stdlib.h>main(){char*s1,*s2,m;s1=s2=(char*)malloc(sizeof(char));*s1=15;*s2=2
•Reedthefollowingarticleaboutpersonalselling.•Foreachquestion15-20,markoneletter(A,B,Cor.D)onyourAnswerSh
Thefollowingisaletterofapplication.Afterreadingit,youarerequiredtocompletetheoutlinebelowit(No.46toNo.50).
TheImportanceofaGoodStartForthispart,youareallowed30minutestowriteanessaycommentingonthesaying"Agood
最新回复
(
0
)