首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2. 当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2. 当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
admin
2016-01-11
56
问题
设A为3阶实对称矩阵,且满足条件A
2
+2A=O.已知A的秩r(A)=2.
当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
选项
答案
矩阵A+kE仍为实对称矩阵.由(1)知,A+kE的全部特征值为一2+k,一2+k,k,于是,当k>2时矩阵A+kE的特征值均大于零.因此,当k>2时,矩阵A+kE为正定矩阵.若A+kE为正定矩阵,只需其顺序主子式大于0,即k需满足k一2>0,(k一2)
2
>0,(k一2)
2
k>0,因此,当k>2时,矩阵A+kE为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/Pv34777K
0
考研数学二
相关试题推荐
设η为非零向量,A=η为方程组AX=0的解,则a=________,方程组的通解为________.
A=求a,b及可逆矩阵P,使得P-1AP=B.
(1)若A可逆且A~B,证明:A*~B*;(2)若A~B,证明:存在可逆矩阵P,使得AP~BP.
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设函数f(x)在[0,1]上连续,(0,1)内可导,且证明在(0,1)内存在一点,使fˊ(c)=0.
已知抛物线y=px2+qx(其中p<0,q>0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S.(Ⅰ)问p和q何值时,S达到最大值?(Ⅱ)求出此最大值.
设随机变量X1,X2,X3,X4互独立且都服从标准正态分布N(0,1),已知,对给定的α(0<α<1),数yα满足P{Y>ya}=α,则有
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).若α=(1,2,-1)T,求Aα;
设某企业生产一种产品,其成本C(Q)=-16Q2+100Q+1000,平均收益=a一(a>0,0<b<24),当边际收益MR=44,需求价格弹性Ep=时获得最大利润,求获得最大利润时产品的产量及常数a与b的值.
设f(x,y)为连续函数,且f(x,y)=xf(x,y)dxdy+y2,则f(x,y)=().
随机试题
ThenumberofspeakersofEnglishinShakespeare’stimeisestimatedtohavebeenaboutfivemillion.Todayitisestimatedthat
条件必需氨基酸
肝炎性假瘤的CT表现缺乏特异性,以下增强表现正确的是
A.4~6cm2B.≤2.0cm2C.≤1.5cm2D.≤1.0cm2E.≤0.5cm2中度二尖瓣狭窄时瓣膜口面积为
下列内容中,属于监理股份有限公司特点的是( )。
证券公司的定向资产管理业务中发生关联交易的,应当采取措施包括()。I.事先将相关信息以书面形式通知客户,要求客户在指定期限内答复Ⅱ.事先将相关信息以书面形式通知资产托管机构Ⅲ.定向资产管理合同应当明确约定关联交易的通知和答复程序Ⅳ.客户未同
以证券交易为中心,有组织机构和人员,有专门设施的交易市场是()。
在追究行为人的法律责任时,应当进行成本收益分析,讲求法律责任的效益。()
Itisabouttimethatsuchpractices
A、DragshavecausedAmericanpeopletohavenoenoughdragsofmedicaluse.B、DrugshaveminedmanyAmericanpeople’smind.C、Dr
最新回复
(
0
)