首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,一2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量组的极大线性无关组是
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,一2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量组的极大线性无关组是
admin
2019-01-14
40
问题
设A是5×4矩阵,A=(α
1
,α
2
,α
3
,α
4
),若η
1
=(1,1,一2,1)
T
,η
2
=(0,1,0,1)
T
是Ax=0的基础解系,则A的列向量组的极大线性无关组是
选项
A、α
1
,α
3
.
B、α
2
,α
4
.
C、α
2
,α
3
.
D、α
1
,α
2
,α
4
.
答案
C
解析
由Aη
1
=0,知α
1
+α
2
—2α
3
+α
4
=0. ①
由Aη
2
=0,知α
2
+α
4
=0. ②
因为n—r(A)=2,故必有r(A)=2.所以可排除(D).
由②知,α
2
,α
4
线性相关.故应排除(B).
把②代入①得α
1
一2α
3
=0,即α
1
,α
3
线性相关,排除(A).
如果α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
,α
4
)=r(一2α
3
,α
2
,α
3
,一α
2
)=r(α
2
,α
3
)=1与r(A)=2相矛盾.所以选(C).
转载请注明原文地址:https://kaotiyun.com/show/QAM4777K
0
考研数学一
相关试题推荐
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程y’+ky=f(x)存在唯一的以ω为周期的特解,并求此特解,其中k≠0为常数.
利用柱坐标变换求三重积分:Ω:x2+y2≤z,x2+y2+z2≤2.
求下列积分:(I)设f(x)=(Ⅱ)设函数f(x)在[0,1]连续且∫01f(x1)dx=A,求∫01dx∫x)f(x)f(y)dy.
设线性方程组为(1)讨论a1,a2,a3,a4取值对解的情况的影响.(2)设a1=a3=k,a2=a4=一k(k≠0),并且(一1,1,1)T和(1,1,一1)T都是解,求此方程组的通解.
已知ξ=(0,1,0)T是方程组的解,求通解.
三人独立地同时破译一个密码,他们每人能够译出的概率分别为.求此密码能被译出的概率P.
设二阶常系数线性微分方程y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设则F’(t)=______.
某工程师为了解一台天平的精度,用该天平对一物体的质量做n次测量,该物体的质量μ是已知的,设n次测量结果X1,X2,…,Xn相互独立且均服从正态分布N(μ,σ2)。该工程师记录的是n次测量的绝对误差Zi=|Xi—μ|(i=1,2,…,n),利用Z1,Z2,…
随机试题
1920年,中国共产党的最早组织建立于()
Ifyouliveinalargecity,youarequitefamiliarwithsomeoftheproblemsofnoise,butbecauseofsomeofitsharmfuleffec
红斑呈红色的原因是
在刑事再审中,下列哪些情形应当依法开庭审理?()
下列关于个人信息的说法,错误的是()。
背景国家某重点工程氧化铝生产基地二期工程项目采用采购及施工总承包(PC)方式,总承包方对6种40台高压容器进行设备采购招标。其中16台压煮器制造工艺复杂,国内仅有少数专业公司有能力制造。为了搞好这批重要设备的采购工作,总承包方按照设备采
某公司以1300万元的报价中标一项直埋热力管道工程,并于收到中标通知书50d后,接到建设单位签订工程合同的通知。招标书确定工期为150d,建设单位以采暖期临近为由,要求该公司即刻进场施工并要求在90d内完成该项工程。该公司未严格履行合同约定
下列所得不属于来源于中国境内所得的是()。
在IDEF0需求建模方法中,每个功能活动可以用带箭头的矩形框来表示,矩形框右边的箭头代表该活动的()。
ReferencesFiltration1.Coccagno,Luciano,Filtration:TheoreticalConsiderations&Practical.Results,CulliganInternatio
最新回复
(
0
)