首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为p1=(1,2,2)T,p2=(2,1,一2)T,求A。
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为p1=(1,2,2)T,p2=(2,1,一2)T,求A。
admin
2017-12-29
40
问题
设三阶实对称矩阵A的特征值为λ
1
=1,λ
2
=一1,λ
3
=0;对应λ
1
,λ
2
的特征向量依次为p
1
=(1,2,2)
T
,p
2
=(2,1,一2)
T
,求A。
选项
答案
因为A为实对称矩阵,故必存在正交矩阵Q=(q
1
,q
2
,q
3
),使 Q
T
AQ=Q
—1
AQ=[*] 将对应于特征值λ
1
,λ
2
的特征向量p
1
=[*]单位化,得 [*] 由正交矩阵的性质,q
3
可取为 [*] 的单位解向量,则由 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/RFX4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn,…是独立同分布的随机变量序列,E(Xi)=μ,D(Xi)=σ2,i=1,2,…,令证明:随机变量序列{Yn}依概率收敛于μ.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.证明:存在η∈[-a,a],使a3f"(η)=3∫-aaf(x)dx.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
设f(x)在[a,b]上连续且严格单调增加.证明:(a+b)∫abf(x)dx<2∫abxf(x)dx.
设总体X的概率密度为X1,X2,…,Xn是来自X的样本,则未知参数θ的最大似然估计值为________.
线性方程组则
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
设α1=[1,0,一1,2]T,α2=[2,一1,一2,6]T,α3=[3,1,t,4]T,β=[4,一1,一5,10]T,已知β不能由α1,α2,α3线性表出,则t=________.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=二次型g(x)=XTAX与f(X)的规范形是否相同?说明理由。
设二次型f=x12+x22+x32+2αx1x2一2βx2x3+2x1x3经正交交换X=PY化成f=y22+2y32,其中X=(x1,x2,x3)T和Y=(y1,y2,y3)T是3维列向量,P是3阶正交矩阵,试求常数α,β。
随机试题
当注意力不集中时,人们对当前感知的事物很难有清晰的认识,因此,注意是很重要的认识过程。()
哈佛大学脑死亡的标准包括无感受性和反应性、无运动和无呼吸、()、()。
来源于蔷薇科植物的药材是
【背景资料】高新技术企业新建厂区里某8层框架结构办公楼工程,采用公开招标的方式选定A公司作为施工总承包。施工合同中双方约定钢筋、水泥等主材由业主供应,其他结构材料及装饰装修材料均由总承包负责采购。施工过程中,发生如下事件:事件
对不能排除洗钱嫌疑,同时资金可能转往境外的,经中国人民银行负责人批准,可以采取临时冻结措施,临时冻结的时间不得超过()小时。
小王因为经常出差,和单位的人沟通不足,所以没有获得进修的机会。他感到很沮丧,也没有归属感。假如你是小王,该怎么办?
穿小鞋:戴高帽
关于OSI网络层次模型的划分原则,下列阐述不正确的是()。
在SQLSELECT查询中,为了使查询结果排序必须使用短语
CompanyInnovationA.InashabbyofficeindowntownManhattan,agroupof30AI(artificialintelligence)programmersfrom
最新回复
(
0
)