首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在上半平面上求一条凹曲线,其上任一点M(χ,y)处的曲率等于此曲线在该点的法线段MQ长度的倒数,Q是法线与χ轴的交点,且曲线在点(1,1)处的切线与χ轴平行.
在上半平面上求一条凹曲线,其上任一点M(χ,y)处的曲率等于此曲线在该点的法线段MQ长度的倒数,Q是法线与χ轴的交点,且曲线在点(1,1)处的切线与χ轴平行.
admin
2018-06-12
51
问题
在上半平面上求一条凹曲线,其上任一点M(χ,y)处的曲率等于此曲线在该点的法线段MQ长度的倒数,Q是法线与χ轴的交点,且曲线在点(1,1)处的切线与χ轴平行.
选项
答案
设所求曲线为y=y(χ),则它在点M(χ,y)处的法线为 Y-y(χ)=-[*](X-χ). (y′≠0) 令Y=0,得与χ轴的交点Q(χ+yy′,0), [*](y′=0时也满足). 按题意得微分方程 [*] 即yy〞=1+y
′2
按题意,初始条件是:y(1)=1,y′(1)=0. 下解初值问题[*] 这是不显含χ的可降阶方程,解法是:作变换y′=[*]=p,并以y为自变量,得 [*] 代入方程得y[*]=1+p
2
. 这是可分离变量的方程,分离变量得 [*] 由y=1时y′=p=0 [*]C
1
=1[*] 注意,由方程知,y>0时y〞>0,再由y′(1)=0,则χ>1时y′>0;χ<1时y′<0 于是[*] 两边积分并注意χ=1时y=1解得 ln(y+[*])=±(χ-1),即y+[*]. 由此又得y-[*]. 因此所求解y=[*][e
χ-1
+e
-(χ-1)
]即为所求曲线方程.
解析
转载请注明原文地址:https://kaotiyun.com/show/RFg4777K
0
考研数学一
相关试题推荐
设f(x)=3u(x)一2v(x),g(x)=2u(x)+3υ(x),并设都不存在.下列论断正确的是()
设f(x)具有一阶连续导数,f(0)=0,且微分方程[xy(1+y)一f(x)y]dx+[f(x)+x2y]dy=0为全微分方程.(Ⅰ)求f(x);(Ⅱ)求该全微分方程的通解.
设则f(x,y)在点(0,0)处()
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cχ=0的基础解系,B是m阶可逆矩阵,证明:BA的行向量也是齐次方程组Cχ=0的基础解系.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(1)计算并化简PQ;(2)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
函数u=在点M0(1,1,1)处沿曲面2z=χ2+y2在点M0处外法线方向n的方向导数=________.
已知三元二次型χTAχ的平方项系数都为0,α=(1,2,-1)T满足Aα=2α.①求χTAχ的表达式.②求作正交变换χ=Qy,把χTAχ化为标准二次型.
设f(χ)=在χ=0处二阶导数存在,则常数a,b分别是
已知方程组与方程组是同解方程组,试确定参数a,b,c.
有两名选手比赛射击,轮流对同一个目标进行射击,甲命中目标的概率为α,乙命中目标的概率为β甲先射,谁先命中谁得胜.问甲、乙两人获胜的概率各为多少?
随机试题
2008年6月30日,陕西省政府召开处级以上干部大会,通报省林业厅等单位在“华南虎照片事件”中犯的严重错误以及对相关公务人员的处理决定。在此8个月前,该省镇坪县农民周某声称在该县发现了野生华南虎并拍有华南虎照片。此照片一公布,随即遭到该县林业局野生动物管理
患者,女,51岁。2009年6月15日因“体检时胸片发现右下肺占位性病变2天”入院。入院后胸部CT示:右下肺占位性病变,周围型肺癌可能性大,不排除右下肺门淋巴结转移。纤维支气管镜见右肺下叶支气管开口处新生物,活检报告为“右下肺腺癌”。经完善术前检查后,患者
牙髓失活法最严重的并发症是
有关病毒性肝炎的流行病学表现,哪项是错误的
A.与碳酸钠溶液共热,加过量硫酸析出白色沉淀B.在碱性溶液中与三氯化铁反应形成赭色沉淀C.在弱酸性溶液中与三氯化铁反应显紫堇色D.在碱性溶液中,可被铁氰化钾氧化,氧化产物于正丁醇中,显蓝色荧光E.与羟胺作用,在稀酸中与高铁离子呈色阿司匹林
下列适用于软土地基处理的方法有()。
股份有限公司的成立日为()当天。
低碳生活方式正受到越来越多中国人的追捧。在民间,有越来越多的普通百姓加入到低碳生活的队伍中来。不久前一项涉及1.5万人的网络低碳调查显示,73.08%的人有双面使用纸张的习惯,83.33%的人自备购物袋,79.49%的人能自觉地把空调温度调到26℃,83.
设总体X服从参数为P的几何分布,如果取得样本观测值为X1,X2,…,Xn,求参数p的矩估计值与最大似然估计值。
ChildConsultantsThesedays,"whatdoyouwanttodowhenyougrowup?"isthewrongquestiontoaskchildrenintheUSA.T
最新回复
(
0
)