首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在上半平面上求一条凹曲线,其上任一点M(χ,y)处的曲率等于此曲线在该点的法线段MQ长度的倒数,Q是法线与χ轴的交点,且曲线在点(1,1)处的切线与χ轴平行.
在上半平面上求一条凹曲线,其上任一点M(χ,y)处的曲率等于此曲线在该点的法线段MQ长度的倒数,Q是法线与χ轴的交点,且曲线在点(1,1)处的切线与χ轴平行.
admin
2018-06-12
62
问题
在上半平面上求一条凹曲线,其上任一点M(χ,y)处的曲率等于此曲线在该点的法线段MQ长度的倒数,Q是法线与χ轴的交点,且曲线在点(1,1)处的切线与χ轴平行.
选项
答案
设所求曲线为y=y(χ),则它在点M(χ,y)处的法线为 Y-y(χ)=-[*](X-χ). (y′≠0) 令Y=0,得与χ轴的交点Q(χ+yy′,0), [*](y′=0时也满足). 按题意得微分方程 [*] 即yy〞=1+y
′2
按题意,初始条件是:y(1)=1,y′(1)=0. 下解初值问题[*] 这是不显含χ的可降阶方程,解法是:作变换y′=[*]=p,并以y为自变量,得 [*] 代入方程得y[*]=1+p
2
. 这是可分离变量的方程,分离变量得 [*] 由y=1时y′=p=0 [*]C
1
=1[*] 注意,由方程知,y>0时y〞>0,再由y′(1)=0,则χ>1时y′>0;χ<1时y′<0 于是[*] 两边积分并注意χ=1时y=1解得 ln(y+[*])=±(χ-1),即y+[*]. 由此又得y-[*]. 因此所求解y=[*][e
χ-1
+e
-(χ-1)
]即为所求曲线方程.
解析
转载请注明原文地址:https://kaotiyun.com/show/RFg4777K
0
考研数学一
相关试题推荐
设X和Y的联合密度函数为(Ⅰ)求Z=Y—X的密度函数;(Ⅱ)求数学期望E(X+Y).
已知P=是矩阵A=的一个特征向量.(1)求参数a,b及特征向量p所对应的特征值;(2)问A能不能相似对角化?并说明理由.
设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.
某五元齐次线性方程组的系数矩阵经初等变换,化为,则自(1)χ4,χ5;(2)χ3,χ5;(3)χ1,χ5;(4)χ2,χ3.那么正确的共有()
设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)2+(b1χ2+b2χ2+b3χ3)2,记(1)证明二次型f对应的矩阵为2ααT+ββT;(2)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12
下列条件不能保证n阶实对称阵A为正定的是()
进行独立重复试验直到试验取得首次成功为止,设每次试验的成功率都是P(0<P<1).现进行10批试验,其各批试验次数分别为5,4,8,3,4,7,3,1,2,3.求:(Ⅰ)试验成功率P的矩估计值;(Ⅱ)试验失败率q的最大似然估计值.
设随机变量X的概率密度为f(χ)=记事件A={X≤1},对X进行4次独立观测,到第四次事件A刚好出现两次的概率就为q,则q=_______.
设二次型χTAχ=χ12+4χ22+χ32+2aχ1χ2+2bχ1χ3+2cχ2χ3,矩阵B=,满足AB=0.①用正交变换化χTAχ为标准形,写出所作变换.②求(A-3E)6.
设X1,X2,…,Xn独立同分布,X1的取值有四种可能,其概率分布分别为:p1=1-θ,p2=θ-θ2,p3=θ2-θ3,p4=θ3,记Nj为X1,X2,…,Xn中出现各种可能的结果的次数,N1+N2+N3+N4=n.确定a1,a2,a3,a4使
随机试题
有关孕期检查的四步触诊法,下列错误的是
关于眼球挫伤引起的房角后退的描述,正确的有
A.由前向后B.由后向前C.垂直向D.旋转E.侧向肯氏四类牙列缺损,义齿最佳就位方向
对不适合做液压试验的容器,可用()试验代替液压试验。
企业管理费由基本费用和()组成。
关于证券清算与交收的原则,以下说法正确的有( )。
与封建社会教育特征不符的是()
请认真阅读下列材料。并按要求作答。美丽的小兴安岭我国东北的小兴安岭,有数不清的红松、白桦、栎(lì)树……几百里连成一片,就像绿色的海洋。春天,树木抽出新的枝条,长出嫩绿的叶子。山上的积雪融(róng)化了,雪水汇(huì)成
下列观点中属于主观唯心主义的是()。
婚姻关系存续期间,双方用夫妻共同财产出资购买以一方父母名义参加房改的房屋,产权登记在一方父母名下,离婚时另一方主张按照夫妻共同财产对该房屋进行分割的,人民法院不予支持。()
最新回复
(
0
)