首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,证明: 存在c∈(0,1),使得f(c)=M/n;
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,证明: 存在c∈(0,1),使得f(c)=M/n;
admin
2019-12-24
85
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,证明:
存在c∈(0,1),使得f(c)=M/n;
选项
答案
根据已知条件,存在a∈(0,1),使得f(a)=M。令F(x)=f(x)-M/n, 显然F(x)在[0,1]上连续,又因为f(0)=0,n>1,故 F(0)=f(0)-M/n=-M/n<0, F(a)=f(a)-M/n=M(1-1/n)>0, 由零点定理可知,至少存在一点c∈(0,a),使得F(c)=f(c)-M/n=0,即f(c)=M/n。
解析
转载请注明原文地址:https://kaotiyun.com/show/RmD4777K
0
考研数学三
相关试题推荐
设总体X的概率分布为X~,其中参数θ未知且。从总体X中抽取一个容量为8的简单随机样本,其8个样本值分别是1,0,1,-1,1,1,2,1。试求:(Ⅰ)θ的矩估计值;(Ⅱ)θ的最大似然估计值;(Ⅲ)经验分布函数F8(x)。
设a是一个常数,则I==_________________________。
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当xε(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足=t3(t≥0),则f(x)的表达式是_________________________。
设f(x)在x=0处连续,且=2,则曲线y=f(x)在点(0,f(0))处的切线方程为_________________________。
已知X,Y为随机变量且P{X≥0,Y≥0}=,P{X≥0}=P{Y≥0}=设A={max(X,Y)≥0},B={max(X,Y)<0,min(X,Y)<0},C={max(X,Y)≥0,min(X,Y)<0},则P(A)=_______,P(B)=____
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=一1}=,P{Y=1}=求:(I)Z=XY的概率密度fZ(z);(Ⅱ)V=|X—Y|的概率密度fV(v).
设二维随机变量(X,Y)的概率密度函数为f(x,y),则随机变量(2X,Y+1)的概率密度函数f1(x,y)=_______.
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并利用泊松定理求出α的近似值(e-5=0.007).
已知袋中有3个白球2个黑球,每次从袋中任取一球,记下它的颜色再将其放回,直到记录中出现4次白球为止.试求抽取次数X的概率分布.
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T.试讨论当a,b为何值时,(1)β不能用α1,α2,α3线性表示;(2)β能用α1,α2,α3唯一地线性表示,求表示式
随机试题
改错题:改正句子中的错误。郑和行香碑拓片记载了郑和第五次下西洋前特地来到泉州东郊的灵山圣墓祈求庇佑航海成功。
下列不是湿热腰痛特点的是( )
经期延后,经量少,色暗淡,质稀,有块,小腹冷痛,喜温喜按,腰酸无力,形寒畏冷,小便清长,大便溏薄,见于经期延后,经量少,经色紫黯,有块,小腹冷痛拒按,得温痛减,面色青白,畏寒肢冷,见于
子宫肌瘤的发病相关因素最可能的是
刘某是甲有限责任公司的董事长兼总经理。任职期间,多次利用职务之便,指示公司会计将资金借贷给一家主要由刘某的儿子投资设立的乙公司。对此,持有公司股权0.5%的股东王某认为甲公司应该起诉乙公司还款,但公司不可能起诉,王某便自行直接向法院对乙公司提起股东代表诉讼
工程项目进度平衡表是()中的表格之一。
甲公司的业务员胡某公出购货,向财务科借款2000元,出具借款收据。胡某公出购货过程中,向乙公司购货一批,取得盖有乙公司公章的发票一张,后发现该发票记载的货物型号有错误。另外,胡某公出的火车票遗失,无法取得证明。要求:根据上述资料,从下列各题的备选答案
下列关于风险管理的描述中,不正确的有()。
下列不属于企业所得税视同销售收入的是()。
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为________。
最新回复
(
0
)