首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,证明: 存在c∈(0,1),使得f(c)=M/n;
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,证明: 存在c∈(0,1),使得f(c)=M/n;
admin
2019-12-24
56
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,证明:
存在c∈(0,1),使得f(c)=M/n;
选项
答案
根据已知条件,存在a∈(0,1),使得f(a)=M。令F(x)=f(x)-M/n, 显然F(x)在[0,1]上连续,又因为f(0)=0,n>1,故 F(0)=f(0)-M/n=-M/n<0, F(a)=f(a)-M/n=M(1-1/n)>0, 由零点定理可知,至少存在一点c∈(0,a),使得F(c)=f(c)-M/n=0,即f(c)=M/n。
解析
转载请注明原文地址:https://kaotiyun.com/show/RmD4777K
0
考研数学三
相关试题推荐
设A是一个n阶实矩阵,使得AT+A正定,证明A可逆.
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型f(x1,x2,…,xn)=(1)用矩阵乘积的形式写出此二次型.(2)f(x1,x2,…,xn)的规范形和XTAX的规范形是否相同?为什么?
A=.则()中矩阵在实数域上与A合同.
已知随机变量X~N(0,1),求:(I)Y=的分布函数;(Ⅱ)Y=eX的概率密度;(Ⅲ)Y=|X|的概率密度.(结果可以用标准正态分布函数ψ(x)表示)
设某地段在一个月内发生交通事故的次数X服从泊松分布,其中重大事故所占比例为α(0<α<1).据统计资料,该地段在一个月内发生8次交通事故是发生10次交通事故概率的2.5倍,求该地段在一年内最多有一个月发生重大交通事故的概率(假定各月发生交通事故情况互不影响
随机地向半圆(a为正常数)内掷一点,点落在半圆内任何区域的概率与该区域的面积成正比,用X表示原点到该点连线与x轴正方向的夹角,求X的概率密度.
(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
设(I)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(一1,0,1,0)T,ξ3=(0,1,1,0)T是(I)的一个基础解系,η1=(0,1,0,1)T,η2=(1,1,一1,0)T是(Ⅱ)的一个基础解系.求(I)和(Ⅱ)公共解.
设随机变量X的概率密度为则随机变量X的二阶原点矩为_______.
设z=f(x,y)二阶可偏导,=2,且f(x,0)=1,f’y(x,0)=x,则f(x,y)=______.
随机试题
证券公司应当按照()的结算模式办理集合资产管理计划的结算业务。
企业债务风险指标主要反映企业的债务负担水平、偿债能力及其面临的债务风险,其基本指标包括()。
教师在教学过程中需要了解学生的身心发展规律等知识。这表明教学不可以忽视()知识。
正方形ABCD的两条对角线交于点O,将A、B、C、D、O这五点中的每一点都涂上红色、黄色、蓝色或绿色这四种颜色中的一种,且线段OA、OB、OC、OD、AB、BC、CD、AD的两个端点的颜色均不能相同。问有多少种不同的涂色方法?()
(四川2009—10)将参加社会活动的108个学生平均分成若干小组,每组人数在8人到30人之间,则共有()种不同的分法。
微机上广泛使用的Windows2000是
Itisoftenobservedthattheagedspendmuchtimethinkingandtalkingabouttheirpastlives,【71】aboutthefuture.Theseremin
Atsometimeinyourlifeyoumayhaveastrongdesiretodosomethingstrangeorterrible.However,chancesarethatyoudon’t
A、It’slovely.B、Notlikely.C、It’sfaraway.D、OK.D本题考查向别人提出请求的一般疑问句及其回答。回答分为肯定和否定两种情况:肯定回答一般有Sure/Certainly/OK/Yes,ofcourse/
Nooneshouldbeforcedtowearauniformunderanycircumstances.Uniformsaredemandingtothehumanspiritandtotallyunnece
最新回复
(
0
)