设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,证明: 存在c∈(0,1),使得f(c)=M/n;

admin2019-12-24  37

问题 设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,证明:
存在c∈(0,1),使得f(c)=M/n;

选项

答案根据已知条件,存在a∈(0,1),使得f(a)=M。令F(x)=f(x)-M/n, 显然F(x)在[0,1]上连续,又因为f(0)=0,n>1,故 F(0)=f(0)-M/n=-M/n<0, F(a)=f(a)-M/n=M(1-1/n)>0, 由零点定理可知,至少存在一点c∈(0,a),使得F(c)=f(c)-M/n=0,即f(c)=M/n。

解析
转载请注明原文地址:https://kaotiyun.com/show/RmD4777K
0

最新回复(0)