首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,证明: 存在c∈(0,1),使得f(c)=M/n;
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,证明: 存在c∈(0,1),使得f(c)=M/n;
admin
2019-12-24
37
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,证明:
存在c∈(0,1),使得f(c)=M/n;
选项
答案
根据已知条件,存在a∈(0,1),使得f(a)=M。令F(x)=f(x)-M/n, 显然F(x)在[0,1]上连续,又因为f(0)=0,n>1,故 F(0)=f(0)-M/n=-M/n<0, F(a)=f(a)-M/n=M(1-1/n)>0, 由零点定理可知,至少存在一点c∈(0,a),使得F(c)=f(c)-M/n=0,即f(c)=M/n。
解析
转载请注明原文地址:https://kaotiyun.com/show/RmD4777K
0
考研数学三
相关试题推荐
设f(x)在[-δ,δ]有定义,且f(0)=f’(0)=0,f’’(0)=a>0,又收敛,则p的取值范围是()。
设总体X服从正态分布N(μ,σ2),X1,X2,…,X25是取自总体X的简单随机样本,为样本均值,若,则a=()。
一条自动生产线连续生产n件产品不出故障的概率为n=0,1,2,….假设产品的优质品率为p(0<p<1).如果各件产品是否为优质品相互独立.(I)计算生产线在两次故障间共生产k件(k=0,1,2,…)优质品的概率;(Ⅱ)若已知在某两次故障间该生产线生产了
设随机变量Y~E(1),且X与Y相互独立.记Z=(2X—1)Y,(Y,Z)的分布函数为F(y,z).试求:(I)Z的概率密度fZ(z);(Ⅱ)F(2,一1)的值.
设A是一个n阶正定矩阵,B是一个n阶实的反对称矩阵,证明A+B可逆.
设A是一个n阶实矩阵,使得AT+A正定,证明A可逆.
A,B都是n阶矩阵,并且B和E+AB都可逆,证明:B(E+AB)-1B-1=E—B(E+AB)-1A.
设z=f(x,y)二阶可偏导,=2,且f(x,0)=1,f’y(x,0)=x,则f(x,y)=______.
设y1=ex,y2=x2为某二阶齐次线性微分方程的两个特解,则该微分方程为________.
z=f(xy)+yg(x2+y2),其中f,g二阶连续可导,则=______.
随机试题
有中国特色社会主义文化建设的根本,是()
乳磨牙髓室底薄,副根管多,髓室感染极易至根分叉处,因而
患者女,53岁,右耳渐进性听力下降伴耳鸣1年,患者自耳鸣以来长期失眠,不伴耳痛,否认中耳炎病史,近半年月经不规律。查体双外耳道干燥通畅,鼓膜完整光锥可见。纯音测听结果示左耳平均听阈15dB,右耳自4000Hz开始高频下降,高频平均听阈50dB,为感音神经性
血小板保存的最佳温度应为
为了减轻胆囊炎患者的严重右上腹疼痛,首选的药物为以下哪种
A注册会计师是P公司2005年度会计报表审计的外勤审计负责人,在了解P公司基本情况后,A注册会计师及其助理人员开始编制总体审计计划和具体审计计划。在编制审计计划,评估确定审计风险过程中,A注册会计师需对助理人员提出的相关问题予以解答。根据独立审计准则的相关
Allchildrenareavid_____praise.
教师职业道德区别于其他职业道德的显著标志是()。
动物在由低级向高级发展过程中的特点是()。
America—thegreat"meltingpot"—hasalwaysbeenarichblendofculturaltraditionsfromallovertheworld.ManyAmericanfamil
最新回复
(
0
)