首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量β可由向量组α1,α2,...,αm线性表示,但不能由向量组(I):α1,α2,...,αm-1, 线性表示,记向量组(Ⅱ):α1,α2,...,αm-1,β,则
设向量β可由向量组α1,α2,...,αm线性表示,但不能由向量组(I):α1,α2,...,αm-1, 线性表示,记向量组(Ⅱ):α1,α2,...,αm-1,β,则
admin
2019-03-12
36
问题
设向量β可由向量组α
1
,α
2
,...,α
m
线性表示,但不能由向量组(I):α
1
,α
2
,...,α
m-1
,
线性表示,记向量组(Ⅱ):α
1
,α
2
,...,α
m-1
,β,则
选项
A、若α
1
,α
2
,...,α
s
线性相关,则Aα
1
,Aα
2
,...,Aα
s
线性相关.
B、若α
1
,α
2
,...,α
s
线性相关,则Aα
1
,Aα
2
,...,Aα
s
线性无关.
C、若α
1
,α
2
,...,α
s
线性无关,则Aα
1
,Aα
2
,...,Aα
s
线性相关.
D、若α
1
,α
2
,...,α
s
线性无关,则Aα
1
,Aα
2
,...,Aα
s
线性无关.
答案
A
解析
因为(Aα
1
,Aα
2
,...,Aα
s
=A(α
1
,α
2
,...,α
s
),所以
r(Aα
1
,Aα
2
,...,Aα
s
)≤r(α
1
,α
2
,...,α
s
).
因为α
1
,α
2
,...,α
s
线性相关,有r(α
1
,α
2
,...,α
s
)
r(Aα
1
,Aα
2
,...,Aα
s
)
所以Aα
1
,Aα
2
,...,Aα
s
线性相关,故应选(A).
注意,当α
1
,α
2
,...,α
s
线性无关时,若秩r(A)=n,则Aα
1
,Aα
2
,...,Aα
s
线性无关,否则Aα
1
,Aα
2
,...,Aα
s
可以线性相关.因此,(C),(D)均不正确.
转载请注明原文地址:https://kaotiyun.com/show/SNP4777K
0
考研数学三
相关试题推荐
设A为反对称矩阵,则如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
设n阶矩阵A满足A4+2A3一5A2+2A+5E=0.证明A一2E可逆.
A是3阶矩阵,α是3维列向量,使得P=(α,Aα,A2α)可逆,并且A3α=3Aα一2A2α.求|A+E|.
设线性方程组为讨论a1,a2,a3,a4取值对解的情况的影响.
已知非齐次线性方程组有3个线性无关的解.证明此方程组的系数矩阵A的秩为2.
设an=tan0xdx,(Ⅰ)求(an+an+2)的值;(Ⅱ)试证:对任意的常数λ>0级数收敛.
设z=z(x,y)是由方程F(xy,y+z,xz)=0所确定的隐函数,且F具有一阶连续偏导数,求.
计算定积分I=(a>0,b>0).
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,,X(n)=max(X1,…,Xn).求θ的矩估计量和最大似然估计量;
设且求y′.
随机试题
关于面静脉的说法,正确的是()。
WhenweaccepttheevidenceofourunaidedeyesanddescribetheSunasayellowstar,wehavesummedupthemostimportantsing
采用时态法对外币报表项目进行折算时,以下哪些财务报表项目按照现行汇率进行折算()
苏轼《前赤壁赋》的语言特色是()。
微型计算机中的内存储器,通常采用____________。
设,则()
下列关于美国内战历史意义的表述,不正确的是()。
根据税收征收管理制度的规定,对国家税务总局作出的具体行政行为不服的,向()申请行政复议。
[*]
Anewscholarlystudydocumentingthepoorhealthofsouthernmilitaryrecruits(新兵)hasbeenmuchreported.Theteamofresearcher
最新回复
(
0
)