首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为偶函数,且满足f’(x)+2f(x)-3∫0xf(t-x)dt=-3x+2,求f(x).
设f(x)为偶函数,且满足f’(x)+2f(x)-3∫0xf(t-x)dt=-3x+2,求f(x).
admin
2020-03-16
52
问题
设f(x)为偶函数,且满足f’(x)+2f(x)-3∫
0
x
f(t-x)dt=-3x+2,求f(x).
选项
答案
∫
0
x
(x-x)dt=-∫
0
x
(t-x)d(x-t)=-∫
x
0
f(-u)d=∫
0
x
f(u)du, 则有f’(x)+2f(x)-3∫
0
x
f(u)du=-3x+2,因为f(x)为偶函数,所以f’(x)是奇函数,于是f’(0)=0,代入上式得f(0)=1. 将f’(x)+2f(x)-3∫
0
x
f(u)du=-3x+2两边对x求导数得 f’’(x)+2f’(x)-3f(x)=-3, 其通解为f(x)=C
1
e
x
+C
2
e
-3x
+1,将初始条件代入得f(x)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/Sb84777K
0
考研数学二
相关试题推荐
设α1,α2,…,αs,β都是n维向量,证明:r(α1,α2,…,αS,β)=
设α是n维单位列向量,A=E-ααT.证明:r(A)<n.
设α=(a1,a2,…,an)T是Rn中的非零向量,方阵A=ααT.(1)证明:对正整数m,存在常数t,使Am=tm-1A,并求出t;(2)求一个可逆矩阵P,使P-1AP=∧为对角矩阵.
设对上题中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关。
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。求AB-1。
设F(x)是f(x)的原函数,F(1)=若当x>0时,有f(x)F(x)=,试求f(x).
设连续函数f(x)满足:∫01[f(x)+xf(xt)]dt与x无关,求f(x).
求下列二重积分:(Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1;(Ⅱ)I=|3x+4y|dxdy,其中D:x2+y2≤1;(Ⅲ)I=ydxdy,其中D由直线z=-2,y=0,y=2及曲线x=所围成.
[2018年]设平面区域D由曲线(0≤t≤2π)与x轴围成,计算二重积分(x+2y)dxdy.
随机试题
阿托品的药理作用不包括
近年来进展最为迅速的一类抗高血压药是
上述招标程序中,有哪些不妥之处?请说明理由。问题久拖不决后,该医院能否要求重新招标?为什么?
行为人超越代理权以被代理人名义订立的合同,相对人可以催告被代理人予以追认。被代理人未作表示的视为()。
最初的生命可能就是一群偶然聚集在一起的有机物。之后,这群偶遇的有机物有了明确的分工。蛋白质负责提供支架和生产能量,DNA和RNA则保存和实施群体的“复制图纸”,磷脂分子和蛋白质还联手建了细胞膜。正是这层神奇的膜,将有机物集群包裹在一个稳定的环境中。生命的单
根据以下资料。回答下列问题。2006-2010年,深圳市三次产业中,企业登记数逐年增加的产业有()个。
监领地制
下列关于犯罪中止的表述中,不正确的是()
WhatmakesSusanbecomeanovernightstar?
Ifhe(send)______tohospitalontime,hewouldstillbealivenow.
最新回复
(
0
)