首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为偶函数,且满足f’(x)+2f(x)-3∫0xf(t-x)dt=-3x+2,求f(x).
设f(x)为偶函数,且满足f’(x)+2f(x)-3∫0xf(t-x)dt=-3x+2,求f(x).
admin
2020-03-16
27
问题
设f(x)为偶函数,且满足f’(x)+2f(x)-3∫
0
x
f(t-x)dt=-3x+2,求f(x).
选项
答案
∫
0
x
(x-x)dt=-∫
0
x
(t-x)d(x-t)=-∫
x
0
f(-u)d=∫
0
x
f(u)du, 则有f’(x)+2f(x)-3∫
0
x
f(u)du=-3x+2,因为f(x)为偶函数,所以f’(x)是奇函数,于是f’(0)=0,代入上式得f(0)=1. 将f’(x)+2f(x)-3∫
0
x
f(u)du=-3x+2两边对x求导数得 f’’(x)+2f’(x)-3f(x)=-3, 其通解为f(x)=C
1
e
x
+C
2
e
-3x
+1,将初始条件代入得f(x)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/Sb84777K
0
考研数学二
相关试题推荐
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(aretanξ)f’(ξ)=一1.
设函数f(x)在[0,π]上连续,且∫0πf(x)sindx=0,∫0πf(x)cosxdx=0。证明在(0,π)内f(x)至少有两个零点。
f(x)在(一∞,+∞)上连续,=+∞,且f(x)的最小值f(x0)<x0,证明:f[f(x)]至少在两点处取得最小值.
设有微分方程y’-2y=ψ(x),其中试求在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,满足条件y(0)=0.
设D=((x,y)|x2+y2≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数.计算二重积分
(I)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(l>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫aa+lf(x)dx=∫0lf(x)dx;(Ⅱ)求
求下列二重积分:(Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1;(Ⅱ)I=|3x+4y|dxdy,其中D:x2+y2≤1;(Ⅲ)I=ydxdy,其中D由直线z=-2,y=0,y=2及曲线x=所围成.
[2018年]设平面区域D由曲线(0≤t≤2π)与x轴围成,计算二重积分(x+2y)dxdy.
讨论f(x,y)=在点(0,0)处的连续性、可偏导性及可微性.
随机试题
等渗性脱水时应
[2007年,第9题]若∫f(x)dx=x3+C,则∫f(cosx)sinxdx等于()。(式中C为任意常数)
在FOB、CFR、CIF三种合同中,第一种卖方承担的责任和费用最小,而第三种最大。()
注册商标期满不再续展的,自注销之日起()年内,商标局对与该商标相同或者近似的商标注册申请,不予核准。
下列属于企业存货的有()。
教师在履行教育义务的活动中,最主要、最基本的道德责任是()。
某一地区在拆迁时将一些枯死的树木刨出。拆迁办组织三个部门的人员准备将树木锯成短木。树木的粗细都相同,只是长度不一样。甲部门的人锯的树木是2米长,乙部门的人锯的树木是1.5米长。丙部门的人锯的树木是1米长,都要求按0.5米长的规格锯开。时间结束时,三个部门正
课程标准的结构一般由以下几部分组成:前言部分、课程目标部分、——和课程实施建议部分。
ReadthearticlebelowaboutculturaldifferencesbetweenJapaneseandAmericanmanagers.Choosethebestsentencetofillinea
DearSirorMadam,Thisisthesecondmonthrunningthatyourdeliveryhasbeenlateinarrival.Ourcurrentorderfors
最新回复
(
0
)