首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求证:当x>0时不等式(1+x)ln2(1+x)<x2成立.
求证:当x>0时不等式(1+x)ln2(1+x)<x2成立.
admin
2020-03-16
80
问题
求证:当x>0时不等式(1+x)ln
2
(1+x)<x
2
成立.
选项
答案
令f(x)=x
2
-(1+x)ln
2
(1+x),则有f(0)=0, f’(x)=2x-ln
2
(1+x)-2ln(1+x),f’(0)=0, f’’(x)=2-[*][x-ln(1+x)],f’’(0)=0, f’’’(x)=[*],f’’’(0)=0. 于是f’’(x)当x≥0时单调增加,又f’’(0)=0,所以当x>0时f’’(x)>f’’(0)=0.从而f’(x)当x≥0时单调增加,又f’(0)=0,故当x>0时f’(x)>f’(0)=0.因此f(x)当x≥0时单调增加,又f(0)=0,所以当x>0时f(x)>f(0)=0.原不等式得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/UOA4777K
0
考研数学二
相关试题推荐
[2002年]设y=y(x)是二阶常系数线性微分方程y"+py'+qy=e3x满足初始条件.y(0)=y'(0)=0的特解,则当x→0时,函数[ln(1+x2)]/y(x)的极限().
[2016年]设D是由曲线y=(0≤x≤1)与围成的平面区域,求D绕x轴旋转一周所得旋转体的体积和表面积.
[2008年]设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意t∈[0,+∞),由直线x=0,x=t,曲线y=f(x)以及z轴所围成的曲边梯形绕x轴旋转一周生成一旋转体.若该旋转体的侧面面积在数值上等于其体积的2倍,求函
[2005年]设有三元方程xy一zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程().
[2014年]设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:∫aa-∫abg(t)dtf(x)dx≤∫abf(x)g(x)dx.
[2003年]有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(见图1.3.5.10),容器的底面圆的半径为2m.根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。利用的结果判断矩阵B一CTA一1C是否为正定矩阵,并证明结论。
求解初值问题
函数的无穷间断点的个数是()
考虑一元函数f(x)的下列4条性质:①f(x)在[a,b]上连续;②f(x)在[a,b]上可积;③f(x)在[a,b]上可导;④f(x)在[a,b]上存在原函数.以PQ表示由性质P可推出性质Q,则有()
随机试题
什么是“异读词”?下面各词语中加着重号的字,哪些是属于异读范围的,哪些不是,为什么?凡不规范的注音要改正。
用统计方法分析铸件缺陷时,记录、统计务求详细,还应记录缺陷的特点及可疑之处、()或其他生产条件的变化与时间等。
Morethanfortythousandreaderstolduswhattheylookedforinclosefriendships,whattheyexpected【C1】______friends,whatth
下列哪一种构件的代号是不正确的?[2003年第159题]
从所给的选项中,选择最合适的一项填在问号处,使之呈现一定的规律性。()
对“人民警察的义务直接决定于国家的任用行为”的正确理解是()。
一副扑克牌除大小王之外有52张,从中取三张,使得三张点数之和为26,且第三张点数不小于前两张点数之和。若A=1点,B=2点,……,J=11点,Q=12点,K=13点,点数相同花色不同为不同取法,那么共有多少种不同取法?
1.当颁发向河道内排放化学物质的许可证时,它们是以每天可向河道中排放多少磅每种化学物质的形式来颁发的。通过对每种化学物质单独计算来颁发许可证,这些许可证所需的数据是基于对流过河道的水量对排放到河道内的化学物质的稀释效果的估计。因此河道在许可证的保护之下,
Ingeneral,thetestsworkmosteffectivelywhenthequalitiestobemeasuredcanbemostpreciselydefinedandleasteffectivel
颐和园(theSummerPalace)始建于清朝,是中国规模最大、保存最完好的皇家园林(imperialgarden)之一。
最新回复
(
0
)