首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设fn(x)=x+x2+…+xn=l(n=2,3,…). (Ⅰ)证明方程fn(x)=0在区间[0,+∞)内存在唯一的实根,记为xn; (Ⅱ)求(Ⅰ)中的{xn}的极限值
设fn(x)=x+x2+…+xn=l(n=2,3,…). (Ⅰ)证明方程fn(x)=0在区间[0,+∞)内存在唯一的实根,记为xn; (Ⅱ)求(Ⅰ)中的{xn}的极限值
admin
2019-12-23
14
问题
设f
n
(x)=x+x
2
+…+x
n
=l(n=2,3,…).
(Ⅰ)证明方程f
n
(x)=0在区间[0,+∞)内存在唯一的实根,记为x
n
;
(Ⅱ)求(Ⅰ)中的{x
n
}的极限值
选项
答案
(Ⅰ)由f
n
(0)=-1<0,f
n
(1)=n-1>0,n=2,3,…,所以f
n
(x)=0在区间(0,1)内存在实根,记为x
n
. 以下证在区间(0,+∞)内至多存在一个实根.事实上, f'
n
(x)=1+2x+3x
2
+…+nx
n-1
>0,z∈(0,+∞). 所以在区间(0,+∞)内f
n
(x)=0至多存在一个实根.结合以上讨论至少一个至多一个,所以f
n
(x)=0在区间(0,+∞)内存在唯一的实根,且在区间(0,1)内.记此根为x
n
(n=2,3,…). (Ⅱ)欲求[*],先证其存在,为此,证{x
n
}单调减少. 0=f
n
(x
n
)-f
n+1
(x
n+1
) =(x
n
+x
n
2
+…+x
n
n
)-(x
n+1
+x
n+1
2
+…+x
n+1
n
+x
n+1
n+1
). =(x
n
-x
n+1
)[1+(x
n
+x
n+1
)+…+(x
n
n-1
+x
n
n-2
x
n+1
+…+x
n-1
n-1
)]-x
n+1
n+1
. 由于[ ]内为正,等号左边为0,所以x
n
-x
n+1
>0(n=2,3,…),不然上面等号右边为负,与左边为零矛盾.于是知{x
n
)关于n严格单调减少,且有下界(因x
n
>0).所以 [*] 另一方面,由x
n
<x
2
<1(n>2),所以0<x
n
n
<x
2
n
. 但0<x
2
<1,由夹逼定理知[*]. 由[*]. 两边取极限,得[*], [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/UXS4777K
0
考研数学一
相关试题推荐
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为①求A.②证明A+E是正定矩阵.
用指定的变量替换求
设A是n阶方阵,2,4,…,2n是A的n个特征值,E是n阶单位阵.计算行列式|A-3E|的值.
设直线L:及π:x—y+2z一1=0.求L绕y轴旋转一周所成曲面的方程.
下面连续可微的向量函数{P(x,y),Q(x,y)}在指定的区域D上是否有原函数u(x,y)(du=Pdx+Qdy或gradu={P,Q}).若有,求出原函数.{P,Q}=,D={(x,y)|y>-x}.
函数(Ⅰ)将f(x)展开成(x-1)的幂级数,并求此幂级数的收敛域;(Ⅱ)在此收敛域上,该幂级数是否都收敛于f(x)?如果在某处收敛而不收敛于f(x)在该处的值,那么收敛于什么?均要求说明理由.
设A是3阶矩阵,且每行元素之和为2,α,β是线性无关的3维列向量,满足Aα=β,Aβ=α,则A~∧,其中∧=_________.
下列矩阵中,不能相似于对角矩阵的是()
随机试题
人工智能在电影小说里往往被塑造成像终结者一样的形象给人类带来毁灭的力量,即使是著名物理学家霍金和科技名人伊隆·马斯克也在警告人们人丁智能可能代替人类。也许在未来这将是我们确实需要面对的问题,但是人工智能的现状正好相反,现实生活中人工智能正在带来治愈的力量。
下述哪一项与系统性红斑狼疮诊断有关
新生儿出生后24小时X线呈“白肺”应考虑为
材料一一日,王教授应邀到甲机关举办一场关于职业道德与行为规范关系的专题讲座。会场里时常响起手机声,会议主持人不断地用手势提醒大家关闭手机,甚至打断学者讲座,让大家保持会场秩序。次日,王教授到乙机关举办同样的讲座,会场秩序井然,听讲座的每个人都自觉地关闭手机
《中国共产党章程》中明确规定:“中国共产党在社会主义初级阶段的基本路线是:领导和团结全国各族人民,以经济建设为中心,坚持四项基本原则,坚持改革开放,自力更生,艰苦创业,为把我国建设成为富强民主文明和谐的社会主义现代化国家而奋斗。”实现社会主义初级阶段奋斗目
求微分方程y"-y=4cosx+ex的通解.
操作系统的主要作用是()。
Readthethearticlebelowabouthoteltheft.ChoosethebestwordtofilleachgapfromA,B,CorD.Foreachquestion(19-33)
UnitedStatescustomslawsdefineanantique(古董)asanobjectthatismorethan100yearsold.Properly,anantiquemustalsobe【
A、Bypayingthefinerequired.B、Byreturningtheoverduebook.C、Bybuyinganewbookforthelibrary.D、Bymakingasincereap
最新回复
(
0
)