首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设fn(x)=x+x2+…+xn=l(n=2,3,…). (Ⅰ)证明方程fn(x)=0在区间[0,+∞)内存在唯一的实根,记为xn; (Ⅱ)求(Ⅰ)中的{xn}的极限值
设fn(x)=x+x2+…+xn=l(n=2,3,…). (Ⅰ)证明方程fn(x)=0在区间[0,+∞)内存在唯一的实根,记为xn; (Ⅱ)求(Ⅰ)中的{xn}的极限值
admin
2019-12-23
9
问题
设f
n
(x)=x+x
2
+…+x
n
=l(n=2,3,…).
(Ⅰ)证明方程f
n
(x)=0在区间[0,+∞)内存在唯一的实根,记为x
n
;
(Ⅱ)求(Ⅰ)中的{x
n
}的极限值
选项
答案
(Ⅰ)由f
n
(0)=-1<0,f
n
(1)=n-1>0,n=2,3,…,所以f
n
(x)=0在区间(0,1)内存在实根,记为x
n
. 以下证在区间(0,+∞)内至多存在一个实根.事实上, f'
n
(x)=1+2x+3x
2
+…+nx
n-1
>0,z∈(0,+∞). 所以在区间(0,+∞)内f
n
(x)=0至多存在一个实根.结合以上讨论至少一个至多一个,所以f
n
(x)=0在区间(0,+∞)内存在唯一的实根,且在区间(0,1)内.记此根为x
n
(n=2,3,…). (Ⅱ)欲求[*],先证其存在,为此,证{x
n
}单调减少. 0=f
n
(x
n
)-f
n+1
(x
n+1
) =(x
n
+x
n
2
+…+x
n
n
)-(x
n+1
+x
n+1
2
+…+x
n+1
n
+x
n+1
n+1
). =(x
n
-x
n+1
)[1+(x
n
+x
n+1
)+…+(x
n
n-1
+x
n
n-2
x
n+1
+…+x
n-1
n-1
)]-x
n+1
n+1
. 由于[ ]内为正,等号左边为0,所以x
n
-x
n+1
>0(n=2,3,…),不然上面等号右边为负,与左边为零矛盾.于是知{x
n
)关于n严格单调减少,且有下界(因x
n
>0).所以 [*] 另一方面,由x
n
<x
2
<1(n>2),所以0<x
n
n
<x
2
n
. 但0<x
2
<1,由夹逼定理知[*]. 由[*]. 两边取极限,得[*], [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/UXS4777K
0
考研数学一
相关试题推荐
设直线L:.求该旋转曲面介于z=0与z=1之间的几何体的体积.
设直线L:.求直线绕z轴旋转所得的旋转曲面;
因为(x2ex)’=(xx+2x)ex,[*]
[*]
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;
(Ⅰ)设A是n阶方阵,A=O是否是A2=O的充分必要条件,说明理由;(Ⅱ)设A是2阶方阵,证明A3=O的充分必要条件是A2=O.
设f(u)有连续的一阶导数,S是曲面z=6+x2+y2(6≤z≤7),方向取上侧.则曲面积分=___________
设A是3阶矩阵,且每行元素之和为2,α,β是线性无关的3维列向量,满足Aα=β,Aβ=α,则A~∧,其中∧=_________.
设二次型xTAx=x12+x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵满足AB=0.求(A一3E)6.
设二次型xTAx=x12+x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵满足AB=0.用正交变换化xTAx为标准形,写出所作变换.
随机试题
已知某种金属的光电效应红限频率为v0,现用频率为u(v>v0)的光照射该金属产生光电效应,则光电子的最大初动能Ek等于______。
下列方剂中体现消补兼施、辛开苦降的配伍特点的是
在感染性腹泻的预防控制中,对传染源要求做到“五早一就”。“五早”是
行政合理性原则的产生是由于()。
根据《建设工程质量管理条例》规定,下列说法正确的是()。
所有者权益是指企业的所有者对企业资产的要求权。()
人寿保险以外的其他保险的被保险人或者受益人,对保险人请求赔偿或者给付保险金的权利,白其知道保险事故发生之日起()年内不行使而消灭。[2005年真题]
某公司于2011年年初购入设备一台,设备价款为1500万元,预计使用3年,预计期末无残值,采用直线法按3年计提折旧(均符合税法规定)。该设备于购入当日投入使用。预计能使公司未来3年的销售收入分别增长1200万元、2000万元和1500万元,经营成本
中央气象台进行天气预报,先用计算机解出描述天气演变的方程组,“算”出未来天气。天气预报员通过分析天气图、气象卫星等资料.再根据经验的累积,作出未来3—5天的具体天气预报。每天上午8点,中央气象台联网各地气象台,进行天气会商,首席预报员把大家的预报意见汇总后
Accordingtothenews,Leeson______.
最新回复
(
0
)