首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)叙述并证明一元函数微分学中的罗尔定理; (2)叙述并证明一元函数微分学中的拉格朗日中值定理.
(1)叙述并证明一元函数微分学中的罗尔定理; (2)叙述并证明一元函数微分学中的拉格朗日中值定理.
admin
2019-08-06
93
问题
(1)叙述并证明一元函数微分学中的罗尔定理;
(2)叙述并证明一元函数微分学中的拉格朗日中值定理.
选项
答案
(1)罗尔定理:设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则至少存在一点ξ∈(a,b)使f’(ξ)=0. 证明:由于f(x)在[a,b]上连续,所以f(x)在[a,b]上存在最大值M和最小值m. ①如果M=m,则f(x)≡C,从而f’(x)≡0,任取ξ∈(a,b)均有f’(ξ)=0. ②如果M>m,由于f(a)=f(b),所以M或m中至少有1个在开区间(a,b)内取到,即在(a,b)内f(x)可取到极值(极大值或(和)极小值).由费马定理知,在对应点x=ξ∈(a,b)处,f’(ξ)=0. (2)拉格朗日中值定理:设函数f(x)在[a,b]上连续,在(a,b)内可导,则至少存在一点ξ∈(a,b),使 f(b)一f(a)=f’(ξ)(b一a). 证明:令φ(x)=f(x)一[*](x一a),则φ(x)在[a,b]上连续,在(a,b)内可导,且 φ(a)=f(a),φ(b)=f(a),故φ(a)=φ(b), 所以φ(x)在[a,b]上满足罗尔定理条件,从而知至少存在一点ξ∈(a,b)使φ’(ξ)=0.即 [*] 即f(b)一f(a)=f’(ξ)(b-a).证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/UuJ4777K
0
考研数学三
相关试题推荐
设x3-3xy+y3=3确定隐函数y=y(x),求y=y(x)的极值.
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y’’+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为().
设函数f(x,y)可微,求f(x,y).
已知微分方程y"+(x+e2y)(y’)3=0.求此方程的解.
设某一设备由三大部件构成,设备运转时,各部件需调整的概率分别为0.1,0.2,0.3,若各部件的状态相互独立,求同时需调整的部件数X的分布函数.
设总体X~N(μ,σ2),Y1,Y2,…,Yn(n=16)是来自X的简单随机样本,求下列概率:(Ⅰ)P{(Xi一μ)2≤2σ2};(Ⅱ)P{≤2σ2}.
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当
向量组α1,α2,…,αs线性无关的充分必要条件是
(1989年)设某厂家打算生产一批商品投放市场,已知该商品的需求函数为P=P(x)=.且最大需求量为6,其中x表示需求量,P表示价格.1)求该商品的收益函数和边际收益函数;2)求使收益最大时的产量、最大收益和相应的价格;3)画出收益
设α1,α2,…,αs均为n维向量,下列结论不正确的是()
随机试题
一个长方形的永久磁铁,若从中间部位锯开后,则()。
在计算机中可以用来存储二进位信息的有________。
确定Hp(幽门螺杆菌)是否根除的试验应在抗Hp治疗后何时进行
人体饥饿时,可以作为能源的物质有
下列说法正确的是( )。
ICAO是一个非营利的世界性国际货运代理行业组织,代表了由大约40000家货运代理企业、800万~1000万从业人员组成的国际货运代理行业。()
一研究机构最近举行了一次奖金对促进工作效率的作用的调查,结果表明:获得奖金的职工比那些没有获得奖金的职工工作效率平均高出20%。调查内容涉及职工加班的次数、日完成工作量等一些指标。这充分说明奖金对促进职工提高工作效率的作用是很明显的。如果以下(
2022年4月12日,国家发改委公布该委与国家能源局联合印发的《氢能产业发展中长期规划(2021-2035年)》,这是我国首个氢能产业中长期规划。《规划》中对氢的战略定位为()。①氢能是未来国家能源体系的重要组成部分②氢能是持续提升
设f(x)在点x=0的某一邻域内具有二阶连续导数,且,证明级数绝对收敛.
Ourape-menforefathershadnoobviousnaturalweaponsinthestruggleforsurvivalintheopen.Theyhadneitherthepowerfult
最新回复
(
0
)