首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)叙述并证明一元函数微分学中的罗尔定理; (2)叙述并证明一元函数微分学中的拉格朗日中值定理.
(1)叙述并证明一元函数微分学中的罗尔定理; (2)叙述并证明一元函数微分学中的拉格朗日中值定理.
admin
2019-08-06
42
问题
(1)叙述并证明一元函数微分学中的罗尔定理;
(2)叙述并证明一元函数微分学中的拉格朗日中值定理.
选项
答案
(1)罗尔定理:设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则至少存在一点ξ∈(a,b)使f’(ξ)=0. 证明:由于f(x)在[a,b]上连续,所以f(x)在[a,b]上存在最大值M和最小值m. ①如果M=m,则f(x)≡C,从而f’(x)≡0,任取ξ∈(a,b)均有f’(ξ)=0. ②如果M>m,由于f(a)=f(b),所以M或m中至少有1个在开区间(a,b)内取到,即在(a,b)内f(x)可取到极值(极大值或(和)极小值).由费马定理知,在对应点x=ξ∈(a,b)处,f’(ξ)=0. (2)拉格朗日中值定理:设函数f(x)在[a,b]上连续,在(a,b)内可导,则至少存在一点ξ∈(a,b),使 f(b)一f(a)=f’(ξ)(b一a). 证明:令φ(x)=f(x)一[*](x一a),则φ(x)在[a,b]上连续,在(a,b)内可导,且 φ(a)=f(a),φ(b)=f(a),故φ(a)=φ(b), 所以φ(x)在[a,b]上满足罗尔定理条件,从而知至少存在一点ξ∈(a,b)使φ’(ξ)=0.即 [*] 即f(b)一f(a)=f’(ξ)(b-a).证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/UuJ4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续且单调增加,证明:
设f(x)在[a,b]上连续,在(a,b)内二阶连续可导.证明:存在ξ∈(a,b),使得
设X和Y是相互独立的随机变量。其概率密度分别为其中λ>0,μ>0是常数,引入随机变量求E(Z)和D(Z).
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
求下列定积分:∫-11
求下列定积分:
设A和B是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是:
设α1,α2,…,αs均为n维向量,下列结论不正确的是()
求一个以y1=tet,y2=sin2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
设A是n阶矩阵,下列结论正确的是().
随机试题
WhenyoubuyaT-shirt,orafurcoatinastore,itoftencarriesalabel(标签)tellingwhomadeitorfromwhatstoreitwasbo
下列叙述错误的是A.肝脏是脂肪酸β-氧化的主要器官B.肝脏可合成VLDLC.肝脏是利用酮体的主要器官D.肝脏可将胆固醇转化为胆汁酸E.肝脏可生成HDL
新生儿肺透明膜病病因是( )。
治疗水肿性溃疡不得使用的药物是
阅读下面材料,回答问题。杨老师在教学“分数的基本性质”时,设计了这样的教学导入:同学们,在学习新内容之前,我先给大家讲个故事:猴山上的小猴子最喜欢吃猴王做的饼。有一天,猴王做了三块大小一样的饼分给小猴子们吃。它先把第一块饼平均切成四块,分给甲猴
自2018年7月1日起,我国将相当幅度降低汽车进口关税。()
大学生:公开选聘:村官
人们常说“他们一个唱红脸,一个唱白脸”。其中,“唱白脸”的意思是:
人力资源计划编制的输出不包括(23)。
An"applepolisher"isonewhogivesgiftstowinfriendshiporspecialtreatment.Itisnotexactlyabribe(贿赂),butiscloset
最新回复
(
0
)