首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)叙述并证明一元函数微分学中的罗尔定理; (2)叙述并证明一元函数微分学中的拉格朗日中值定理.
(1)叙述并证明一元函数微分学中的罗尔定理; (2)叙述并证明一元函数微分学中的拉格朗日中值定理.
admin
2019-08-06
56
问题
(1)叙述并证明一元函数微分学中的罗尔定理;
(2)叙述并证明一元函数微分学中的拉格朗日中值定理.
选项
答案
(1)罗尔定理:设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则至少存在一点ξ∈(a,b)使f’(ξ)=0. 证明:由于f(x)在[a,b]上连续,所以f(x)在[a,b]上存在最大值M和最小值m. ①如果M=m,则f(x)≡C,从而f’(x)≡0,任取ξ∈(a,b)均有f’(ξ)=0. ②如果M>m,由于f(a)=f(b),所以M或m中至少有1个在开区间(a,b)内取到,即在(a,b)内f(x)可取到极值(极大值或(和)极小值).由费马定理知,在对应点x=ξ∈(a,b)处,f’(ξ)=0. (2)拉格朗日中值定理:设函数f(x)在[a,b]上连续,在(a,b)内可导,则至少存在一点ξ∈(a,b),使 f(b)一f(a)=f’(ξ)(b一a). 证明:令φ(x)=f(x)一[*](x一a),则φ(x)在[a,b]上连续,在(a,b)内可导,且 φ(a)=f(a),φ(b)=f(a),故φ(a)=φ(b), 所以φ(x)在[a,b]上满足罗尔定理条件,从而知至少存在一点ξ∈(a,b)使φ’(ξ)=0.即 [*] 即f(b)一f(a)=f’(ξ)(b-a).证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/UuJ4777K
0
考研数学三
相关试题推荐
细菌的增长率与总数成正比.如果培养的细菌总数在24小时内由100增长到400,求前12小时后的细菌总数.
设点A(1,0,0),B(0,1,1),线段AB绕x轴一周所得旋转曲面为S.求曲面S介于平面z=0与z=1之间的体积.
求下列微分方程的通解:(x2—3y2)x+(3x2一y2)y=0;
设二维随机变量(U,V)~N(2,2;4,1;),记X=U一bV,Y=V.问当常数b为何值时,X与Y独立?
设某网络服务器首次失效时间服从E(λ),现随机购得4台,求下列事件的概率:(Ⅰ)事件A:至少有一台的寿命(首次失效时间)等于此类服务器期望寿命;(Ⅱ)事件B:有且仅有一台寿命小于此类服务器期望寿命.
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A.
矩阵A=合同于
若β=(1,3,0)T不能由α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,一2)T线性表出,则a=__________.
设α1,α2,…,αs均为n维向量,下列结论不正确的是()
求方程=(1一y2)tanX的通解以及满足y(0)=2的特解.
随机试题
流产后1周,阴道血性分泌物淋漓不尽,发热2天,下腹痛伴血性白带,查:子宫颈已闭,子宫稍大,压痛,双侧附件可触及拇指大小的肿块,压痛明显,体温38.50℃,血红蛋白110g/L,WBC15×109/L,N0.84最可能的诊断是
现代工程咨询方法体系中的市场分析方法包括()。
连续竞价时,某只股票的卖出申报价格为15元,市场即时的最低买入价格为14.98元,则此交易不能成交。()
发票管理的基础环节是( )。
企业采用出包方式购建固定资产,按合同规定预付的工程款,应通过()科目核算。
下列法的形式中,属于国家的根本大法、具有最高法律效力的是()。
剔发令
京杭大运河北起北京,南至杭州,经过北京、()、河北、山东、江苏和浙江六省市,沟通了海河、黄河、淮河、长江、钱塘江五大水系。
______gotinthewheatthanitbegantorainheavily.
Scientiststhinkthemoralists’warningis______.Thephrase"becaughtwithpantsdown"inthefirstparagraphprobablymeans
最新回复
(
0
)