设y1(x),y2(x)为y′+P(x)y=Q(x)的特解,又py1(x)+2qy2(x)为y′+P(x)y=0的解,py1(x)一qy2(x)为y′+P(x)y=Q(x)的解,则p=__________,q=____________.

admin2019-01-05  27

问题 设y1(x),y2(x)为y′+P(x)y=Q(x)的特解,又py1(x)+2qy2(x)为y′+P(x)y=0的解,py1(x)一qy2(x)为y′+P(x)y=Q(x)的解,则p=__________,q=____________.

选项

答案由一阶线性微分方程解的结构性质得 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/V0W4777K
0

最新回复(0)