首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
每箱产品有10件,其中次品数从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.试求:(I)随机检验一箱产品,它能通过验收的概率p;(
每箱产品有10件,其中次品数从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.试求:(I)随机检验一箱产品,它能通过验收的概率p;(
admin
2019-03-12
74
问题
每箱产品有10件,其中次品数从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.试求:(I)随机检验一箱产品,它能通过验收的概率p;(Ⅱ)检验10箱产品通过率不低于90%的概率q.
选项
答案
(I)记B=“任取一件产品为正品”,[*]=“任取一件产品为次品”,则A=BA∪BA,由题设知P(A|B)=1—0.02=0.98,[*]=0.1,所以 p=P(A)=P(BA)+[*]=P(B)P(A|B})+[*] =0.98P(B)+[1一P(B)]×0.1=0.1+0.88P(B). 显然P(B)与该箱产品中有几件次品有关,为计算P(B),我们再次应用全概率公式.若记C
i
=“每箱产品含i件次品”(i=0,1,2),则C
0
,C
1
,C
2
是一完备事件组,P(C
i
)=[*],故B=C
0
B∪C
1
B∪C
2
B,且 P(B)=P(C
0
)P(B|C
0
)+P(C
1
)P(B|C
1
)+P(C
2
)P(B|C
2
) [*] 所以 p=0.1+0.88×0.9=0.892. (Ⅱ)如果用X表示检验10箱被接收的箱数,则通过率为[*],我们要求的概率q=P{[*]≥0.9)=P{X≥9},其中X是10次检验事件A发生的次数,X~B(10,0.892),故 q=P{X≥9}=P{X=9}+P{X=10}=10×0.892
9
×0.108+0.892
10
≈0.705.
解析
转载请注明原文地址:https://kaotiyun.com/show/VAP4777K
0
考研数学三
相关试题推荐
现有命题其中真命题的序号是
设由方程φ(bz—cy,cx一az,ay—bx)=0(*)确定隐函数z=z(x,y),其中φ对所有变量有连续偏导数,a,b,c为非零常数,且bφ’1一aφ2≠0,求.
设f(x,y)=;(Ⅱ)讨论f(x,y)在点(0,0)处的可微性,若可微并求df|(0,0).
求I=ydxdy,其中D由直线x=一2,y=0,y=2及曲线x=一所围成.
设F(x)=,试求:(Ⅰ)F(x)的极值;(Ⅱ)曲线y=F(x)的拐点的横坐标;(Ⅲ)∫—23x2F’(x)dx.
设连续型随机变量X的分布函数为FX(x)=其中a>0,ψ(x),φ(x)分别是标准正态分布的分布函数与概率密度,令Y=,求Y的密度函数.
设z=z(x,y)是由x2—6xy+10y2一2yz—z2+18=0确定的函数,求z=z(x,y)的极值点和极值。
当x→时,π-3arccosx~a,则a=______,b=______.
设是从总体X中取出的简单随机样本X1,…,Xn的样本均值,则是μ的矩估计,如果
设T=cosnθ,θ=arccosx,求
随机试题
A.Kallmann综合征B.Asherman综合征C.Sheehan’ssyndromeD.TurneffssyndromeE.Klinefeltersyndrome属垂体性无排卵的是
患者,女,40岁,因下前牙急性根尖周炎行根管治疗,第一次的处理必须做
香薷散的功用是
下列选项中,不能引起特异性感染的是
斜板沉淀池()。
张某参加公务员录用考试,被某机关录用,在试用期内因违反公务员纪律被取消录用,张某不服,他可以采取的正确方法是()。
文学批评中有句老话叫“知人论世”,也就是说,论其世,才能知其人其文。接受美学有条重要原则叫“视野融合”,只有读者的期待视野和文学文本相融合时,才谈得上理解接受,而读者的期待视野因时而异,故讨论作品的接受就不能不牵涉到时事变迁。作者通过这段文字重在说明:
现代社会中,不仅需要有法律这种社会规范,而且还需要有道德、伦理、宗教等其他社会规范。这说明()。
Readthefollowingtextanddecidewhichanswerbestfitseachspace.Forquestions26-45,markoneletterA,B,CorDony
Wherearethepassengers?
最新回复
(
0
)