首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设讨论f1(x)与f2(x)的极值.
设讨论f1(x)与f2(x)的极值.
admin
2018-09-20
77
问题
设
讨论f
1
(x)与f
2
(x)的极值.
选项
答案
对于f
1
(x),当x>0时,f
1
’(x)=e
x
>0,所以在(0,+∞)内无极值,当x<0时,f
1
’(x)=(x+1)e
x
.令f
1
’(x)=0,得x
1
=一1.当x<一1时,f
1
’(x)<0;当-1x<x<0时,f
1
’(x)>0. 故f
1
(一1)=一e
-1
为极小值. 再看间断点x=0处,当一1<x<0时,f
1
’(x)>0,f
1
(x)<f
1
(0)=0;当x>0时,f
1
(x)<0=f
1
(0),故f
1
(0)=0为极大值. 对于f
2
(x),当x>0时,f
2
’(x)=一e
x
<0,所以在(0,+∞)内无极值.当x<0时,与f
1
(x)同,f
2
(一1)=一e
-1
为极小值.在间断点x=0处,f
2
(0)=一1.当x>0时,f
2
(x)<一1;当x<0且|x|充分小时,f
2
(x)为负值且|f
2
(x)|<1,从而有f
2
(x)>一1.所以f
2
(0)非极值.
解析
转载请注明原文地址:https://kaotiyun.com/show/VjW4777K
0
考研数学三
相关试题推荐
设随机变量X的密度函数为f(x)=,则E(X)=________,D(X)=________.
设总体X的密度函数为f(x)=,X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量。
设A,B为n阶矩阵,且r(A)+r(B)<n,证明:A,B有公共的特征向量.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设f’(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:f[tx1+(1一t)x2]≤tf(x1)+(1一t)f(x2).证明:
设f(x)∈C[0,1]f(x)>0.证明积分不等式:ln∫01f(x)dx≥∫01lnf(x)dx.
设f(x)在区间[a,b]上二阶可导且f"(x)≥0.证明:
设f(x)在[a,b]上连续可导,证明:∫abf(x)dx|+∫ab|f’(x)|dx.
设z=z(x,y)是由x2—6xy+10y2—2yz—z2+18=0确定的函数,求z=z(x,y)的极值点和极值。
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下:试就放回与不放回两种情形,求出(X,Y)的联合分布律.
随机试题
中国与蒙古、意大利签订的司法协助条约规定,被请求国法院只能在以下情况下才能拒绝承认与执行外国法院的判决()
小儿水肿风水相搏治疗首选方是小儿水肿邪陷心肝治疗首选方是
下列事项中,属于内幕信息的是()
以下关于融资租赁业务的表述中,不正确的有()。
下列文种中属于法定公文的是()。
按突起的数目,可以将神经元分为
求二重积分:(Ⅰ)J=x2ydxdy,D={(x,y)|1≤x≤2,0≤y≤x,x2+y2≥2x}(Ⅱ)J=xy2dxdy,D={(x,y)|x2+y2≤ax},a>0为常数.
AgoodspeechisattributedtothefollowingfactorsEXCEPT
Thewordhorsepowerwasfirstusedtwohundredyearsago.JamesWatthadmadetheworld’sfirst【11】usedsteamengine.Hehadno
Musicians—fromkaraokesingerstoprofessionalcelloplayers—arebetterabletoheartargetedsoundsinanoisyenvironment,
最新回复
(
0
)