首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b一a); (Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>2φ(x)dx,则至少存在一点ξ∈(1,3),
(Ⅰ)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b一a); (Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>2φ(x)dx,则至少存在一点ξ∈(1,3),
admin
2017-04-24
88
问题
(Ⅰ)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫
a
b
f(x)dx=f(η)(b一a);
(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>2φ(x)dx,则至少存在一点ξ∈(1,3),使得φ"(ξ)<0.
选项
答案
(Ⅰ)设M与m是连续函数f(x)在[a,b]上的最大值与最小值,即 m≤f(x)≤M,x∈[a,b] 由定积分性质,有 m(b一a)≤∫
a
b
f(x)dx≤M(b一a) 即 [*] 由连续函数介值定理,至少存在一点η∈[a,b],使得f(η)=[*]∫
a
b
f(x)dx, 即 ∫
a
b
f(x)dx=f(η)(b—a) (Ⅱ)由(Ⅰ)的结论,可知至少存在一点η∈[2,3],使 ∫
2
3
φ(x) dx=φ(η)(3一2)=φ(n) 又由φ(2)>∫
2
3
2φ(x)dx=φ(η)知,2<η≤3. 对φ(x)在[1,2]和[2,η]上分别应用拉格朗日中值定理,并注意到φ(1)<φ(2),φ(η)<φ(2),得 [*] 在[ξ
1
,ξ
2
]上对导函数φ’(x)应用拉格朗日中值定理,有 [*] ξ∈(ξ
1
,ξ
2
)[*](1,3).
解析
转载请注明原文地址:https://kaotiyun.com/show/WAt4777K
0
考研数学二
相关试题推荐
设x3-3xy+y3=3确定隐函数y=y(x),求y=y(x)的极值.
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)-f(x)=0在(0,1)内有根.
设y=y(x)由exy=x2+y2+1确定,则dy/dx=________.
设f(x)连续,则d2/dx2∫0xtf(x-t)dt=________.
[*]
求∫(2x3+4x+1)/(x2+x+1)dx.
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点,若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式。
设对任意x>0,曲线y=f(x)上点(x,f(x))处的切线在y轴上的截距等于,求f(x)的一般表达式。
极坐标下的累次积分∫0π/2dθ∫02cosθf(rcosθ,rsinθ)rdr等于().
设F(x)=∫x2x+πesintsintdt,则F(x)
随机试题
农业产业一体化经营是第二次世界大战后发达国家农业走向现代化的重要组织形式,()不是主要的农业产业一体化经营形式。
什么叫裂纹?常见的裂纹有哪些?裂纹有什么危害?
女性,30岁,颜面和双下肢水肿伴少尿半年,查血压140/95mmHg,尿蛋白(+++),红细胞(++)/Hp,血Hb105g/L,胆固醇10.2mmol/L,白蛋白21g/L,补体C3下降,血Cr145μmol/L。本例最可能的诊断为
企业月度财务会计报告的保管期限为()。
某服装加工厂与外商签订了一份加工服装出口合同,该厂报关员到海关办理该批合同备案手续(纸质手册)时,应向海关提交的单证资料包括;
收入汇缴账户除向其基本存款账户或预算外资金财政专用存款户划缴款项外,只收不付,不得支取现金。()
下列关于中外合资经营企业组织机构的表述中,不符合规定的是()。
下列清盛京三陵的名称及墓主人对应正确的是()。
简述学前儿童心理发展的趋势。
某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是()。
最新回复
(
0
)