首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
admin
2018-01-23
24
问题
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫
0
1
f(x)dx.
选项
答案
因为f’(x)在区间[0,1]上连续,所以f’(x)在区间[0,1]上取到最大值M和最小值m,对f(x)-f(0)=f’(c)x(其中c介于0与x之间)两边积分得 ∫
0
1
f(x)dx=∫
0
1
f’(c)xdx, 由m≤f’(c)≤M得m∫
0
1
xdx≤∫
0
1
f’(c)xdx≤M∫
0
1
xdx, 即m≤2∫
0
1
f’(c)xdx≤M或m≤2∫
0
1
f(x)dx≤M, 由介值定理,存在ξ∈[0,1],使得f’(ξ)=2∫
0
1
f(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/WVX4777K
0
考研数学三
相关试题推荐
设A为三阶矩阵,有三个不同特征值λ1,λ2,λ3,对应的特征向量依次为α1,α2,α3,令β=α1+α2+α3.(1)证明:β不是A的特征向量;(2)β,Aβ,A2β线性无关;(3)若A3β=Aβ,计算行列式|2A+3E|.
微分方程y″+4y=2x2在原点处与y=x相切的特解是__________.
证明方程xe2x-2x-cosx+x2/2=0有且仅有两个根.
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f′(η)=2f(x)dx.
A是m×n矩阵,线性方程组AX=b有唯一解的充分必要条件是().
设行列式已知1703,3159,975,10959都能被13整除,不计算行列式D,试证明D能被13整除.
随机试题
关于销售人员的薪酬说法正确的是()。
对开放性颅脑损伤病人,预防创口和颅内感染的首要措施是
符合早产儿的胎龄是
下列措施中,不利于稳定排水立管内压力、增大通水能力的措施是()。
项目决策分析与评价应根据产品的()和竞争力分析结果研究确定营销策略。
【真题(中级)】最常用的直接信用管制工具是()。
下列关于银行业从业人员的做法,不妥当的是()。
下列关于资本结构理论的说法中,正确的有()。
简述第3版《中国居民膳食指南》的内容。
人们对于蜜蜂的赞美,尤其充满______的情趣。在思想史上,艺术史上,许许多多人都歌颂过蜜蜂。这不仅仅因为蜜蜂够酿蜜,而且人们也能从蜜蜂酿蜜中得到______。它能够博采,有能提炼,终于,黄澄澄、香喷喷的蜜糖给酿造出来了。它的酿蜜可以说是一种卓越的创造。填
最新回复
(
0
)