首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明: 存在两个不同的点η,ζ∈(0,1),使得f'(η)f'(ζ)=1。
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明: 存在两个不同的点η,ζ∈(0,1),使得f'(η)f'(ζ)=1。
admin
2019-01-19
82
问题
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:
存在两个不同的点η,ζ∈(0,1),使得f'(η)f'(ζ)=1。
选项
答案
在[0,ξ]和[ξ,1]上对f(x)分别应用拉格朗日中值定理知,存在两个不同的点η∈(0,ξ),ζ∈(ξ,1),使得 f'(η)=[*] 于是 f'(η)f'(ζ)=[*]=1。
解析
转载请注明原文地址:https://kaotiyun.com/show/X1P4777K
0
考研数学三
相关试题推荐
已知某商品的需求量x对价格p的弹性为η=一3p3,而市场对该商品的最大需求量为1(万件),则需求函数为__________.
设A是m×n矩阵,对矩阵A作初等行变换得到矩阵B,证明:矩阵A的列向量与矩阵B相应的列向量有相同的线性相关性.
已知向量组(I)α1=(1,3,0,5)T,α2=(1,2,1,4)T,α3=(1,1,2,3)T与向量组(Ⅱ)β1=(1,一3,6,一1)T,β2=(a,0,6,2)T等价,求a,b的值.
设A是n阶反对称矩阵.(1)证明:对任何n维列向量α,恒有αTAα=0.(2)证明:对任何非零常数c,矩阵A+cE恒可逆.
设A是三阶实对称矩阵,特征值是1,0,一2,矩阵A的属于特征值1与一2的特征向量分别是(1,2,1)T与(1,一1,a)T,求Ax=0的通解.
函数f(x)=(x2一2x一3)|x2—3x|sin|x|不可导点的个数是().
设n阶方阵A、B可交换,即AB=BA,且A有n个互不相同的特征值,证明:A与B有相同的特征向量.B相似于对角矩阵.
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn—r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn—r=ξn—r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ0η
随机试题
阅读韩愈《张中丞传后叙》中的一段文字,然后回答下题。说者又谓远与巡分城而守,城之陷,自远所分始。以此诟远。此又与儿童之见无异。人之将死,其脏腑必有先受其病者;引绳而绝之,其绝必有处。观者见其然,从而尤之,其亦不迭于理矣!小人之好议论,不乐成人之美,
公平贸易
关于法院按照公示催告程序作出的判决,下列哪些表述是错误的?()
下列收入确认中,符合现行会计制度规定的有()。
根据我国宪法的规定,下列选项中哪些自然资源不能属于集体所有?()
莱克星顿枪声
[*]
XytherSoftwareUnlimitedPleaseusetheformbelowtocontactus.NameCalebGuilloryE-mailcguillory@bwma
Whichofthefollowingsentenceshasanobjectcomplement?
HomelandSecuritySecretaryJanetNapolitanowarnedthatwejustcan’twin,canwe,airlines?Overthepastseveralyears,asmo
最新回复
(
0
)