首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
admin
2018-12-29
30
问题
设a
1
,a
2
,…,a
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
选项
答案
必要性:a
1
,a
2
,…,a
n
是线性无关的一组n维向量,因此r(a
1
,a
2
,…,a
n
)=n。对任一n维向量b,因为a
1
,a
2
,…,a
n
,b的维数n小于向量的个数n+1,故a
1
,a
2
,…,a
n
,b线性相关。 综上所述r(a
1
,a
2
,…,a
n
,b)=n。 又因为a
1
,a
2
,…,a
n
线性无关,所以n维向量b可由a
1
,a
2
,…,a
n
线性表示。 充分性:已知任一n维向量b都可由a
1
,a
2
,…,a
n
线性表示,则单位向量组ε
1
,ε
2
,…,ε
n
可由a
1
,a
2
,…,a
n
线性表示,即 r(ε
1
,ε
2
,…,ε
n
) =n≤r(a
1
,a
2
,…,a
n
), 又a
1
,a
2
,…,a
n
是一组n维向量,有r(a
1
,a
2
,…,a
n
)≤n。 综上,r(a
1
,a
2
,…,a
n
)=n。所以a
1
,a
2
,…,a
n
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/XFM4777K
0
考研数学一
相关试题推荐
(02年)
(12年)设A为3阶矩阵,P为3阶可逆矩阵,且p-1AP=若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=
(13年)设A,B,C均为n阶矩阵.若AB=C,且B可逆,则
(91年)随机地向半圆0<y<(a为正常数)内掷一点,点落在半圆内任何区域的概率与该区域的面积成正比.则原点与该点的连线与x轴的夹角小于的概率为_______.
设D是平面直角坐标系中以A(1,1),B(-1,1),C(1,-1)为顶点的三角形区域,D1是D在第二象限的部分,则(xy+ex2siny)dxdy=()
设f(x)在(-∞,+∞)连续,存在极限f(x)=B.证明:(I)设A<B,则对μ∈(A,B),ξ∈(-∞,+∞),使得f(ξ)=μ;(Ⅱ)f(x)在(-∞,+∞)上有界.
设α>0,β>0为任意正数,当x→+∞时将无穷小量:,e-x按从低阶到高阶的顺序排列.
f(x,y,z)dy,变成由z至y再至x的顺序.
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且f’(x)=M.证明:f’(x0)=M.
随机试题
内幕交易罪的主体仅限于证券、期货交易内幕信息的知情人员。
道德能够帮助人们正确认识社会生活的规律和原则,认识人生的价值和意义,认识自己对家庭、他人、社会的义务和责任,使人们的道德实践建立在向善避恶的认识基础上,引导人们正确选择道德行为。这说明道德具有
下列叙述中,哪项是正确的
易袭阳位是下述哪一邪气的致病特点
吴某(广东人)1998年在广西因抢劫被判刑,在浙江服刑。服刑期间广西公安机关发现与前罪有牵连的另一犯罪,即吴某曾经伙同他人在江西盗窃财物巨大。对此应如何处理?()
甲公司为增值税一般纳税人,适用增值税税率为17%,期初无留抵增值税税额,适用企业所得税税率为25%。甲公司2011年1月份发生如下经济业务:(1)1日,甲公司与乙公司(增值税一般纳税人)签订协议,向乙公司销售商品,成本为90万元,增值税专用发票上注明
不同的研究者对信息有着不同的解释,要研究信息,必须理解信息的一般特征。以下说法不正确的是()。
活动表现评价是新课程倡导的一种评价方式。活动表现评价应体现()。
Concernwithmoney,andthenmoremoney,inordertobuytheconveniencesandluxuriesofmodernlife,hasbroughtgreatchanges
Readthefollowingpassagecarefullyandthenparaphrasethenumberedandunderlinedparts.("Paraphrase"meanstoexplaintheme
最新回复
(
0
)