首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列二重积分: (Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1; (Ⅱ)I=|3x+4y|dxdy,其中D:x2+y2≤1; (Ⅲ)I=ydxdy,其中D由直线z=一2,y=0,y=2及曲线x=一所围成.
求下列二重积分: (Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1; (Ⅱ)I=|3x+4y|dxdy,其中D:x2+y2≤1; (Ⅲ)I=ydxdy,其中D由直线z=一2,y=0,y=2及曲线x=一所围成.
admin
2018-11-21
29
问题
求下列二重积分:
(Ⅰ)I=
,其中D为正方形域:0≤x≤1,0≤y≤1;
(Ⅱ)I=
|3x+4y|dxdy,其中D:x
2
+y
2
≤1;
(Ⅲ)I=
ydxdy,其中D由直线z=一2,y=0,y=2及曲线x=一
所围成.
选项
答案
考察积分区域与被积函数的特点,选择适当方法求解. (Ⅰ)尽管D的边界不是圆弧,但由被积函数的特点知选用极坐标比较方便. D的边界线x=1及y=1的极坐标方程分别为 [*] (Ⅱ)在积分区域D上被积函数分块表示,若用分块积分法较复杂.因D是圆域,可用极坐标变换,转化为考虑定积分的被积函数是分段表示的情形.这时可利用周期函数的积分性质. 作极坐标变换x=reosθ,y=rsinθ,则D:0≤θ≤2π,0≤r≤1.从而 I=∫
0
2π
3cosθ+4sinθ|dθ∫
0
1
r.rdr =[*]∫
0
2π
|sin(θ+θ
0
)|dθ, 其中sinθ
0
=[*].由周期函数的积分性质,令t=θ+θ
0
就有 [*] (Ⅲ)D的图形如图9.53所示.若把D看成正方形区域挖去半圆D
1
,则计算D
1
上的积分自然选用极坐标变换.若只考虑区域D,则自然考虑先x后y的积分顺序化为累次积分.若注意D关于直线y=1对称,选择平移变换则最为方便. 作平移变换u=x,v=y—1,注意曲线x=一[*]即x
2
+(y一1)
2
=1,x≤0,则D变成D’.D’由u=一2,v=一1,v=1,u
2
+v
2
=1(u≤0)围成,则 [*] (在uv平面上D’关于u轴对称)
解析
转载请注明原文地址:https://kaotiyun.com/show/XZg4777K
0
考研数学一
相关试题推荐
求解微分方程y″一
设P,Q都是n阶矩阵,且(PQ)2=E,其中E是n阶单位矩阵,则必有().
设X和Y为独立的随机变量,X在区间[0,1]上服从均匀分布,Y的概率密度函数为求随机变量Z=X+Y的分布函数Fz(z).
计算曲面积分xz2dydz+x2ydzdx+y2zdxdy,其中S是球面x2+y2+z2=a2的上半部分与平面z=0所围成的闭曲面外侧.
若视∑为曲面x2+y2+z2=a2(y≥0,z≥0)的上侧,则当f(x,y,z)为下述选项中的函数(),曲线积分f(x,y,z)dydz=0.
下列积分中,积分值等于0的是().
设S是平面x+y+z=4被圆柱面x2+y2=1截出的有限部分,则曲面积分ydS=().
定积分=()
设区域D={(x,y)|x2+y2≤1,x≥0},计算二重积分I=
半圆形闸门半径为R米,将其垂直放入水中,且直径与水面齐平,设水的比重ρ=1。若坐标原点取在圆心,x轴正向朝下,则闸门所受压力P=()
随机试题
淋证的基本病理是
A易与受体蛋白质的羧基结合B可与生物大分子形成氢键,增强与受体的结合力C不易通过生物膜,导致生物活性减弱,毒性降低D易于通过生物膜E增加药物的亲水性,并增加与受体结合力药物分子中引入磺酸基
男,32岁。皮肤反复出现紫癜2周,加重并出现恶心、腹痛1天。查体:四肢皮肤散在紫癜,心肺未见异常,腹平软,脐周轻压痛,无反跳痛和肌紧张,肝、脾肋下未触及,肠鸣音活跃。患者目前不需要的治疗药物是
下列叙述中,哪一种属于内毒素( )
依法必须进行招标项目的招标人向他人透露已获取招标文件的潜在投标人的名称、数量或者可能影响公平竞争的有关招标投标的其他情况的,或者泄露标底的,有关行政监督部门给予警告,可以并处()的罚款。
认识对实践的指导作用表现在哪些方面?
设D1是由曲线和直线y=a及x=0所围成的平面区域;D2是由曲线和直线y=a及x=1所围成的平面区域,其中0<a<1.试求D1绕x轴旋转而成的旋转体体积V1;D2绕y轴旋转而成的旋转体体积V2(如图3.8);
下列方式中,利用主机应用系统漏洞进行攻击的是()。
Pretendingtobehappycanactuallymakeyoumore【B1】______—especiallyifyou’reawoman,accordingtoanewstudy.Researc
Anunsettlingfactaboutlungcanceristhatevencleanlivingcannotguaranteeafreepass.Asignificant【C1】______ofcases—10
最新回复
(
0
)