首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设区间[0,4]上y=f(x)的导函数的图形如图1—2一1所示,则f(x)( )
设区间[0,4]上y=f(x)的导函数的图形如图1—2一1所示,则f(x)( )
admin
2019-02-01
80
问题
设区间[0,4]上y=f(x)的导函数的图形如图1—2一1所示,则f(x)( )
选项
A、在[0,2]单调上升且为凸的,在[2,4]单调下降且为凹的。
B、在[0,1],[3,4]单调下降,在[1,3]单调上升,在[0,2]是凹的,[2,4]是凸的。
C、在[0,1],[3,4]单调下降,在[1,3]单调上升,在[0,2]是凸的,[2,4]是凹的。
D、在[0,2]单调上升且为凹的,在[2,4]单调下降且为凸的。
答案
B
解析
当x∈(0,1)或(3,4)时,f
’
(x)<0,那么f(x)在[0,1],[3,4]单调下降。
当x∈(1,3)时f
’
(x)>0,那么f(x)在[1,3]单调上升。
又f
’
(x)在[0,2]单调上升,那么f(x)在[0,2]是凹的;f
’
(x)在[2,4]单调下降,那么f(x)在[2,4]是凸的。
故选B。
转载请注明原文地址:https://kaotiyun.com/show/Xrj4777K
0
考研数学二
相关试题推荐
设f(x)和g(x)是对x的所有值都有定义的函数,具有下列性质:(1)f(x+y)=f(x)g(y)+f(y)g(x);(2)f(x)和g(x)在x=0处可微,且当x=0时,f(0)=0,g(0)=1,f’(0)=1,g’(0)=0.
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界,证明:f’(x)在(一∞,+∞)内有界.
设有一正椭圆柱体,其底面的长、短轴分别为2a,2b,用过此柱体底面的短轴且与底面成α角(0<α<)的平面截此柱体,得一楔形体(如图1.3—2),求此楔形体的体积V.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4诹线性相关;(2)a为何值时,向量组α1,α2,α3,α4线
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA一1α≠b.
求下列积分:.
设α是n维非零列向量,矩阵A=E-ααT.证明:(1)A2=A的充要条件是αTα=1;(2)当αTα=1时,A不可逆.
设曲线,过原点作切线,求此曲线、切线及x轴所围成的平面图形绕x轴旋转一周所成的旋转体的表面积.
从一艘破裂的油轮中渗漏出来的油,在海面上逐渐扩散形成油层.设在扩散的过程中,其形状一直是一个厚度均匀的圆柱体,其体积也始终保持不变.已知其厚度h的减少率与h3成正比,试证明:其半径r的增加率与r3成反比.
随机试题
胎盘附着部位全部修复需至产后
怎样进行滚动轴承的故障诊断并进行预紧力调整控制?
采用非公开竞争性考试方法录用公务员的“特殊职位”以及如何简化程序,采用什么样的评测办法,必须经( )批准。
A.可加重组织损伤B.可起到调理素的作用C.可使炎症局限D.可清除致炎因子E.可稀释毒素纤维蛋白渗出
主司二便的脏是
关于职能式组织的特点,下列说法错误的是()。
根据地租理论,最劣等土地的级差地租()。
施工合同履行过程中发生工程变更时,应由()向承包人发出变更指令。
期货交易与现货交易在()方面是不同的。
请从给出的四句话中找出没有标点错误的一句。()
最新回复
(
0
)