首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)=,F(χ)=∫0χ(t)dt,则F(χ)在[0,2]上
设f(χ)=,F(χ)=∫0χ(t)dt,则F(χ)在[0,2]上
admin
2020-12-10
85
问题
设f(χ)=
,F(χ)=∫
0
χ
(t)dt,则F(χ)在[0,2]上
选项
A、有界,不可积.
B、可积,有间断点.
C、连续,有不可导点.
D、可导.
答案
C
解析
不必求出F(χ).
这里f(χ)在[0,2]上有界,除χ=1外连续,χ=1是f(χ)的跳跃间断点.由可积性的充分条件
f(χ)在[0,2]上可积,再由基本定理
F(χ)在[0,2]上连续.故A,B不对.
进一步考察F(χ)的可导性.当χ≠1时F′(χ)=f(χ),又χ=1是f(χ)的跳跃间断点,则F(χ)在点χ=1处不可导.故应选C.
转载请注明原文地址:https://kaotiyun.com/show/YW84777K
0
考研数学二
相关试题推荐
设函数f(x)在(―a,a)(a>0)内连续,在x=0处可导,且f′(0)≠0.(Ⅰ)求证:对任意给定的x(0<x<a),存在0<θ<1,使(Ⅱ)求极限
某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下,现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为k=6.
(2000年)已知f(χ)是周期为5的连续函数.它在χ=0某个邻域内满足关系式f(1+sinχ)-3f(1-sinχ)=8χ+α(χ)其中α(χ)是当χ→0时比χ高阶的无穷小,且f(χ)在χ=1处可导,求曲线y=f(χ)在点(6,f(6
(1995年)设y=eχ是微分方程χy′+p(χ)y=χ的一个解,求此微分方程满足条件y|χ=ln2=0。的特解.
[2017年]设函数f(x)在[0,1]上具有二阶导数,且f(1)>0,<0.方程f(x)f″(x)+[f′(x)]2=0,在(0,1)内至少有两个不同的实根.
计算定积分
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k;(2)求(1)中的∫0x(t)dt;(3)以[x]表示不超过x的最大整数,g(x)=x一[x],求∫0x
某车间用一台包装机包装葡萄糖,包得的袋装葡萄糖的净重X(单位kg)是一个随机变量,它服从正态分布N(μ,σ2),当机器工作正常时,其均值为0.5kg,根据经验知标准差为0.015kg(保持不变),某日开工后,为检验包装机的工作是否正常,从包装出的葡萄糖
设热水瓶内热水温度为T,室内温度为T0,t为时间(以小时为单位).根据牛顿冷却定律知:热水温度下降的速率与T-T0成正比.又设T0=20℃,当t=0时,T=100℃,并知24小时后水瓶内温度为50℃,问几小时后瓶内温度为95℃?
方程yy〞=1+yˊ2满足初始条件y(0)=1,yˊ(0)=0的通解为_______.
随机试题
能直接干扰病原菌的生长繁殖,并可用于治疗感染性疾病的化学药物即为化学疗剂。()
下列哪一项不是血瘀证的临床表现
A.Gaisbock综合征B.Mosse综合征C.相对性红细胞增多症D.髓外化生E.应激性红细胞增多症
高血压病时,细动脉硬化的病理改变是
配股权证的交易单位以“手”为单位,1手为()
根据2014年某城市金融业和制造业各1000人的年薪样本数据来比较这两个行业从业人员年薪的离散程度,应采用的统计量是()。
某地发生水污染事件,领导要求立即停止此地供水,并让你去处理,你怎么办?
UML序列图是一种交互图,描述了系统中对象之间传递消息的时间次序。其中,异步消息与同步消息不同,异步消息并不引起调用者终止执行而等待控制权的返回。图5-2中(28)分别表示一条同步消息和一条异步消息。
教师和授课班级之间的联系是()。
Whatdoesthewomanthinkaboutthebusinessoftheman?
最新回复
(
0
)