首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)=,F(χ)=∫0χ(t)dt,则F(χ)在[0,2]上
设f(χ)=,F(χ)=∫0χ(t)dt,则F(χ)在[0,2]上
admin
2020-12-10
36
问题
设f(χ)=
,F(χ)=∫
0
χ
(t)dt,则F(χ)在[0,2]上
选项
A、有界,不可积.
B、可积,有间断点.
C、连续,有不可导点.
D、可导.
答案
C
解析
不必求出F(χ).
这里f(χ)在[0,2]上有界,除χ=1外连续,χ=1是f(χ)的跳跃间断点.由可积性的充分条件
f(χ)在[0,2]上可积,再由基本定理
F(χ)在[0,2]上连续.故A,B不对.
进一步考察F(χ)的可导性.当χ≠1时F′(χ)=f(χ),又χ=1是f(χ)的跳跃间断点,则F(χ)在点χ=1处不可导.故应选C.
转载请注明原文地址:https://kaotiyun.com/show/YW84777K
0
考研数学二
相关试题推荐
t=-7
设D是以点A(1,1),B(一1,1),C(一1,一1)为顶点的三角形区域,则
[*]
[*]
设(2E—C-1B)AT=C-1,其中E是四阶单位矩阵,AT为四阶矩阵A的转置矩阵,求A.
[2000年]已知f(x)是周期为5的连续函数,它在x=0的邻域内满足关系式f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方
已知β可用α1,α2,…,αs线性表示,但不可用α1,α2,…,αs-1线性表示.证明:(1)αs不可用α1,α2,…,αs-1线性表示;(2)αs可用α1,α2,…,αs-1,β线性表示.
求z=x2+12xy+2y2在区域4x2+y2≤25上的最值.
(2011年)设函数y=y(χ)由参数方程确定,求y=y(χ)的极值和曲线y=y(χ)的凹凸区间及拐点.
设f(x)=,g(x)在z=0连续且满足g(x)=1+2x+o(x)(x→0).又F(x)=f[g(x)],则F’(0)=________
随机试题
抽样误差
2岁男孩,股骨中段斜行骨折,短缩移位3cm,其治疗最好采用
乙药店以“凡购买5盒,附赠一盒”的方式促销甲类非处方药“多潘立酮”。该材料中乙药店的行为()
下列对边坡采用预应力锚索加固的叙述,不正确的是()。
某产品本月成本资料如下:(1)单位产品标准成本本企业该产品正常生产能量为1000小时,制造费用均按人工工时分配。(2)本月实际产量20件,实际耗用材料900千克,实际人工工时950小时,实际成本如下:要求:将成本差异总额分解为9种差异(固定
《旅游法》第5条规定,国家倡导()的旅游方式。
构建社会主义和谐社会,要按照民主法治、()的总要求和共同建设、共同享有的原则,着力解决人民最关心、最直接、最现实的利益问题。
尽管大家开始抵制珍稀动物的皮草产品,但仍有家居制造商将珍稀动物的皮毛用于家居饰品。几年前专家发明了一种新的高仿合成皮草.受到了家居制造商广泛的好评。但从最近几年的统计看,各地为获取皮毛而对珍稀动物进行捕杀的活动却并没有减少。以下哪一项正确,最有助于对“捕杀
f(x)在(一∞,+∞)上连续,且f(x)>0,则F(x)=∫0x(x2一t2)f(t)dt的单调性为[].
甲、乙、丙、丁四公司之间形成了三角债。甲建材公司拖欠丙钢铁公司货款170万元。乙建筑工程公司欠甲建材公司材料款180万元。乙建筑工程公司在给丁科研所建好一幢大楼后,因资金尚未到位,丁科研所尚欠乙建筑工程公司工程款180万元。为了尽早了结债务,2008年8月
最新回复
(
0
)